Spaces:
Runtime error
Runtime error
MSP RAJA
commited on
Commit
·
a30b891
1
Parent(s):
f784d15
fixed output
Browse files
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
CHANGED
@@ -3,18 +3,10 @@ from flask import Flask, request, jsonify
|
|
3 |
import os
|
4 |
from wtforms import Form, StringField
|
5 |
from wtforms.validators import DataRequired
|
6 |
-
from config import model_ckpt, pipe, labels
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
10 |
-
# # configure logging
|
11 |
-
# logging.basicConfig(
|
12 |
-
# filename='app.log',
|
13 |
-
# level=logging.INFO,
|
14 |
-
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
15 |
-
# )
|
16 |
-
# logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
class PredictForm(Form):
|
19 |
text = StringField('text', [DataRequired()])
|
20 |
|
@@ -29,13 +21,19 @@ def predict(text: str) -> dict:
|
|
29 |
if preds:
|
30 |
pred = preds[0]
|
31 |
pred = sorted(pred, key=lambda x: x['score'], reverse=True)
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
return {}
|
35 |
except Exception as e:
|
36 |
logger.error("Error processing request: %s", str(e))
|
37 |
return {'error': str(e)}, 500
|
38 |
|
|
|
39 |
@app.route('/language', methods=['POST'])
|
40 |
def predict_language():
|
41 |
"""
|
@@ -57,11 +55,11 @@ def predict_language():
|
|
57 |
description: Invalid request
|
58 |
500:
|
59 |
description: Internal server error
|
|
|
|
|
60 |
"""
|
61 |
-
|
62 |
-
|
63 |
-
text = request.json['text']
|
64 |
-
if not text:
|
65 |
return jsonify({'error': 'Empty text provided'}), 400
|
66 |
|
67 |
result = predict(text)
|
@@ -69,8 +67,7 @@ def predict_language():
|
|
69 |
return jsonify(result)
|
70 |
else:
|
71 |
return jsonify({'error': 'No predictions found'}), 400
|
72 |
-
|
73 |
-
# return jsonify({'error': 'Invalid input provided'}), 400
|
74 |
|
75 |
if __name__ == '__main__':
|
76 |
log_file = 'app.log'
|
@@ -78,4 +75,3 @@ if __name__ == '__main__':
|
|
78 |
logger = logging.getLogger(__name__)
|
79 |
logger.info("Running the app...")
|
80 |
app.run()
|
81 |
-
|
|
|
3 |
import os
|
4 |
from wtforms import Form, StringField
|
5 |
from wtforms.validators import DataRequired
|
6 |
+
from config import model_ckpt, pipe, labels, THRESHOLD
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class PredictForm(Form):
|
11 |
text = StringField('text', [DataRequired()])
|
12 |
|
|
|
21 |
if preds:
|
22 |
pred = preds[0]
|
23 |
pred = sorted(pred, key=lambda x: x['score'], reverse=True)
|
24 |
+
if pred[0]["score"] > THRESHOLD:
|
25 |
+
return {labels.get(p["label"],p["label"]): float(p["score"]) for p in pred[:1]}
|
26 |
+
else:
|
27 |
+
score = pred[0]["score"]
|
28 |
+
logger.error("Prediction score below threshold. text: %s, score: %s", text, score)
|
29 |
+
return {'error': "Prediction score below threshold"}
|
30 |
else:
|
31 |
return {}
|
32 |
except Exception as e:
|
33 |
logger.error("Error processing request: %s", str(e))
|
34 |
return {'error': str(e)}, 500
|
35 |
|
36 |
+
|
37 |
@app.route('/language', methods=['POST'])
|
38 |
def predict_language():
|
39 |
"""
|
|
|
55 |
description: Invalid request
|
56 |
500:
|
57 |
description: Internal server error
|
58 |
+
400:
|
59 |
+
description: Prediction score below threshold
|
60 |
"""
|
61 |
+
text = request.json.get('text')
|
62 |
+
if not text or len(text)==0:
|
|
|
|
|
63 |
return jsonify({'error': 'Empty text provided'}), 400
|
64 |
|
65 |
result = predict(text)
|
|
|
67 |
return jsonify(result)
|
68 |
else:
|
69 |
return jsonify({'error': 'No predictions found'}), 400
|
70 |
+
|
|
|
71 |
|
72 |
if __name__ == '__main__':
|
73 |
log_file = 'app.log'
|
|
|
75 |
logger = logging.getLogger(__name__)
|
76 |
logger.info("Running the app...")
|
77 |
app.run()
|
|
config.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import pipeline
|
2 |
|
|
|
3 |
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
4 |
pipe = pipeline("text-classification", model=model_ckpt)
|
5 |
|
|
|
1 |
from transformers import pipeline
|
2 |
|
3 |
+
THRESHOLD = 0.80
|
4 |
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
5 |
pipe = pipeline("text-classification", model=model_ckpt)
|
6 |
|