Spaces:
Runtime error
Runtime error
import os | |
from typing import List | |
from langchain.document_loaders import PyPDFLoader, TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores.pinecone import Pinecone | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ChatMessageHistory, ConversationBufferMemory | |
from langchain.docstore.document import Document | |
import pinecone | |
import chainlit as cl | |
from chainlit.types import AskFileResponse | |
pinecone.init( | |
api_key="2b6aa6bf-2e20-4445-a560-f7dd4952e59e", | |
environment="gcp-starter", | |
) | |
index_name = "skandhaar" | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
embeddings = OpenAIEmbeddings() | |
namespaces = set() | |
welcome_message = """Welcome to the Chainlit PDF QA demo! To get started: | |
1. Upload a PDF or text file | |
""" | |
def process_file(file: AskFileResponse): | |
import tempfile | |
if file.type == "text/plain": | |
Loader = TextLoader | |
elif file.type == "application/pdf": | |
Loader = PyPDFLoader | |
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as tempfile: | |
if file.type == "text/plain": | |
tempfile.write(file.content) | |
elif file.type == "application/pdf": | |
with open(tempfile.name, "wb") as f: | |
f.write(file.content) | |
loader = Loader(tempfile.name) | |
documents = loader.load() | |
docs = text_splitter.split_documents(documents) | |
for i, doc in enumerate(docs): | |
doc.metadata["source"] = f"source_{i}" | |
return docs | |
def get_docsearch(file: AskFileResponse): | |
docs = process_file(file) | |
# Save data in the user session | |
cl.user_session.set("docs", docs) | |
# Create a unique namespace for the file | |
namespace = str(hash(file.content)) | |
if namespace in namespaces: | |
docsearch = Pinecone.from_existing_index( | |
index_name=index_name, embedding=embeddings | |
) | |
else: | |
docsearch = Pinecone.from_documents( | |
docs, embeddings, index_name=index_name | |
) | |
namespaces.add(namespace) | |
return docsearch | |
async def start(): | |
await cl.Avatar( | |
name="Chatbot", | |
url="https://avatars.githubusercontent.com/u/128686189?s=400&u=a1d1553023f8ea0921fba0debbe92a8c5f840dd9&v=4", | |
).send() | |
files = None | |
while files is None: | |
files = await cl.AskFileMessage( | |
content=welcome_message, | |
accept=["text/plain", "application/pdf"], | |
max_size_mb=20, | |
timeout=180, | |
disable_human_feedback=True, | |
).send() | |
for file in files: | |
msg = cl.Message( | |
content=f"Processing `{file.name}`...", disable_human_feedback=True | |
) | |
await msg.send() | |
# No async implementation in the Pinecone client, fallback to sync | |
docsearch = await cl.make_async(get_docsearch)(file) | |
message_history = ChatMessageHistory() | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key="result", | |
chat_memory=message_history, | |
return_messages=True, | |
) | |
chain = RetrievalQA.from_chain_type( | |
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True, openai_api_key="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"), | |
chain_type="stuff", | |
retriever=docsearch.as_retriever(), | |
return_source_documents=True, | |
) | |
# Let the user know that the system is ready | |
msg.content = f"`{file.name}` processed. You can now ask questions!" | |
await msg.update() | |
cl.user_session.set("chain", chain) | |
async def main(message: cl.Message): | |
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain | |
cb = cl.AsyncLangchainCallbackHandler() | |
res = await chain.acall(message.content, callbacks=[cb]) | |
answer = res["result"] | |
source_documents = res["source_documents"] # type: List[Document] | |
text_elements = [] # type: List[cl.Text] | |
if source_documents: | |
for source_idx, source_doc in enumerate(source_documents): | |
source_name = f"source_{source_idx}" | |
# Create the text element referenced in the message | |
text_elements.append( | |
cl.Text(content=source_doc.page_content, name=source_name) | |
) | |
source_names = [text_el.name for text_el in text_elements] | |
if source_names: | |
answer += f"\nSources: {', '.join(source_names)}" | |
else: | |
answer += "\nNo sources found" | |
await cl.Message(content=answer, elements=text_elements).send() |