Spaces:
Runtime error
Runtime error
File size: 9,321 Bytes
1fb65ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import io_utils as io_uts
import vis_utils as v_uts
from vis_common import *
import pandas as pd
from GPT_prompts import (
TEMPLATE_0,
TEMPLATE_1,
TEMPLATE_2
)
from call_assistant_api import (
EditActionClassifier
)
import json
from datasets import Dataset
unknown_action = "Unknown"
def dfs(actions, res, res_set):
"""
Enumerate all options in an edit action.
"""
if len(actions) == 0:
res_set.append(res)
return
for word in actions[0]:
cur_res = res + [word]
dfs(actions[1:], cur_res, res_set)
return res_set
def split_actions(actions):
if '/' in actions:
words = actions.split(" ")
common = ""
cur_actions = [] # Changed from {} to []
counter = 0
for word in words:
if "/" in word:
action = unknown_action + f"{counter} "
cur_actions.append(word.split('/'))
counter += 1
else:
action = word + " "
common += action
actions_sets = dfs(cur_actions, [], [])
instructions = []
for action_set in actions_sets:
temp_common = common
for i, action in enumerate(action_set):
temp_common = temp_common.replace(unknown_action+f"{i}", action.replace('_', ''))
instructions.append(temp_common.strip())
return instructions
else:
return [actions]
def sample_prompt(sub, class_name, edit_action):
if not ("the subject" in edit_action):
if (" wall " in edit_action) or (" ground " in edit_action) or ("furnished" in edit_action):
prompt = "an indoor living room." if random.uniform(0, 1) < 0.5 else "a beautiful lobby"
return prompt
if (" sky " in edit_action):
prompt = "a natural image of sea, mountains and sky"
return prompt
if (" weather" in edit_action) or (" snow" in edit_action):
prompt = "a naturalistic scene with trees"
return prompt
p = random.uniform(0, 1)
if p < 0.5:
prompt = random.choice(sub["scenes"])
return prompt
p = random.uniform(0, 1)
person = ["view", "pose", "adj", "color", "human_age","people"]
subject = ["view", "pose", "adj", "color", "animal_age", "subjects"]
appends = [" of ", " ", " ", " ", " ", "."]
attri_set = person if p < 0.7 else subject
prompt = ""
for i, key in enumerate(attri_set):
attr = random.choice(sub[key])
prompt = prompt + attr + appends[i]
return prompt
def prepare_our_prompt_v0():
"""
Prepare the prompt with our coverage, simple prompt, found good for person.
"""
random.seed(0)
data_root="/mlx/users/peng.wang/playground/data/chat_edit/assets/test200"
edit_file = f"{data_root}/edit_class.txt"
edit_lines = io_uts.load_lines(edit_file)
sub_file = f"{data_root}/subject.yaml"
sub = io_uts.load_yaml(sub_file)
from_human = f"{data_root}/edit_instructions_v0.jsonl"
# sample an item or empty each feature
items = []
for edit_line in tqdm(edit_lines):
class_name, edit_actions = edit_line.split(":")
edit_actions = split_actions(edit_actions)
for edit_action in edit_actions:
prompt1 = sample_prompt(sub, class_name, edit_action)
prompt = TEMPLATE_0.format(prompt1=prompt1, edit_action=edit_action)
item = {}
item["prompt_0"] = prompt
item["class"] = class_name
item["input"] = prompt1
item["edit"] = edit_action
item["output"] = f"{prompt1} with {edit_action}"
items.append(item)
print("number of examples:", len(items))
io_uts.dump_jsonl(from_human, items)
def config_our_prompt_v1():
# if region wise, let first find and locate the region.
pass
def config_our_prompt_v2():
# if region wise, let first find and locate the region.
pass
def prepare_p2p_prompt_v0():
test_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/test200/"
cache_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/p2p700"
jsonl_file = f"{test_root}instruct_p2p_700.jsonl"
jsonl_file_out = f"{test_root}instruct_p2p_700_reformat.jsonl"
def classify_p2p_edit_action():
classifier = EditActionClassifier()
examples = io_uts.load_jsonl(jsonl_file)
examples_out = []
for count, example in tqdm(enumerate(examples)):
res_file = f"{cache_root}/{count}.json"
if os.path.exists(res_file):
example = io_uts.load_json(res_file)
examples_out.append(example)
continue
edit_class = classifier.infer(example["edit"])
example["class"] = edit_class
example["prompt_0"] = TEMPLATE_0.format(prompt1=example["input"], edit_action=example["edit"])
io_uts.dump_json(res_file, example)
examples_out.append(example)
io_uts.dump_jsonl(jsonl_file_out, examples_out)
def subsample_p2p():
jsonl_file_sample_out = f"{test_root}/instruct_p2p_val.jsonl"
examples = io_uts.load_jsonl(jsonl_file_out)
classes = {}
results = []
max_each_class = 1
for example in examples:
if example["class"] not in classes.keys():
classes[example["class"]] = 1
results.append(example)
else:
if classes[example["class"]] < max_each_class:
classes[example["class"]] += 1
results.append(example)
print("sample num: ", len(results))
io_uts.dump_jsonl(jsonl_file_sample_out, results)
# classify_p2p_edit_action()
subsample_p2p()
def prepare_emu_set():
test_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/emu_test/"
output_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/test200/"
items = []
files = v_uts.list_all_files(test_root, exts=["txt"])
class_map = {
"add": "Local,Add",
"background": "Global,Background",
"color": "Global,Color",
"global": "Global",
"local": "Local",
"remove": "Local,Remove",
"style": "Global,Stylization",
"text": "Local,Add,Text"
}
for edit_file in tqdm(files):
edit_action = io_uts.load_lines(edit_file)
item = {"input": edit_action[1], "edit": edit_action[0], "output": edit_action[2]}
item["prompt_0"] = TEMPLATE_0.format(prompt1=item["input"], edit_action=item["edit"])
class_name = edit_file.split('/')[-2]
item["class"] = class_map[class_name]
items.append(item)
io_uts.dump_jsonl(f"{output_root}/emu_val_90.jsonl", items)
def merge_prompts():
output_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/ChatEdit/"
our_set = "edit_instructions_val"
p2p_set = "instruct_p2p_val"
emu_set = "emu_val_90"
full_items = []
for val_set in [our_set, p2p_set, emu_set]:
items = io_uts.load_jsonl(f"{output_root}/{val_set}.jsonl")
print(val_set, len(items))
keynames = ["input", "edit", "output", "prompt_0", "class"]
items_out = []
for item in items:
# reorder the item keys based on keynames
item_out = {}
for key in keynames:
item_out[key] = item[key]
item_out["prompt_1"] = TEMPLATE_1.format(
prompt1=item["input"],
prompt2=item['output'],
edit_action=item["edit"])
item_out["prompt_2"] = TEMPLATE_2.format(
prompt1=item["input"],
prompt2=item['output'],
edit_action=item["edit"])
items_out.append(item_out)
full_items = full_items + items_out
print("num: ", len(full_items))
io_uts.dump_jsonl(f"{output_root}/full_val.jsonl", full_items)
def classify_and_sample_p2p_prompts():
pass
def write_dataset_toparquet():
dataroot = "/mnt/bn/datacompv6/data/chat_edit/assets/ChatEdit/"
jsonl_path = f"{dataroot}/full_val.jsonl"
folder_name = "prompt_0"
image_folder = f"{dataroot}/{folder_name}"
output_path = f"{dataroot}/data/"
v_uts.mkdir(output_path)
items = io_uts.load_jsonl(jsonl_path)
items_out = []
for i, item in enumerate(tqdm(items)):
image_path = f"{image_folder}/{i:03}.png"
item['image_id'] = f"{i:03}"
item['image'] = v_uts.encode_b64(image_path)
items_out.append(item)
# Convert the data to a pandas DataFrame
df = pd.DataFrame(items_out)
# Create a Hugging Face dataset from the DataFrame
dataset = Dataset.from_pandas(df)
# Save the dataset to a Parquet file
dataset.to_parquet(f"{output_path}/{folder_name}.parquet")
if __name__ == '__main__':
# res = "make firework/rainbow in sky/ground region in the image"
# print(split_actions(res))
# prepare_our_prompt_v0()
# prepare_p2p_prompt_v0()
# prepare_emu_set()
# merge_prompts()
write_dataset_toparquet()
|