File size: 9,321 Bytes
1fb65ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import io_utils as io_uts
import vis_utils as v_uts
from vis_common import *
import pandas as pd

from GPT_prompts import (
    TEMPLATE_0, 
    TEMPLATE_1, 
    TEMPLATE_2
)
from call_assistant_api import (
    EditActionClassifier
)
import json
from datasets import Dataset

unknown_action = "Unknown"
def dfs(actions, res, res_set):
    """
        Enumerate all options in an edit action.
    """
    if len(actions) == 0:
        res_set.append(res)
        return 

    for word in actions[0]:
        cur_res = res + [word]
        dfs(actions[1:], cur_res, res_set)

    return res_set

def split_actions(actions):
    if '/' in actions:
        words = actions.split(" ")
        common = ""
        cur_actions = []  # Changed from {} to []
        counter = 0
        for word in words:
            if "/" in word:
                action = unknown_action + f"{counter} "
                cur_actions.append(word.split('/'))
                counter += 1
            else:
                action = word + " "
            common += action

        actions_sets = dfs(cur_actions, [], [])
        instructions = []
        for action_set in actions_sets:
            temp_common = common
            for i, action in enumerate(action_set):
                temp_common = temp_common.replace(unknown_action+f"{i}", action.replace('_', ''))
            instructions.append(temp_common.strip())
        return instructions    

    else: 
        return [actions]

def sample_prompt(sub, class_name, edit_action):
    if not ("the subject" in edit_action):
        if (" wall " in edit_action) or (" ground " in edit_action) or ("furnished" in edit_action):
            prompt = "an indoor living room." if random.uniform(0, 1) < 0.5 else "a beautiful lobby"
            return prompt
        if (" sky " in edit_action):
            prompt = "a natural image of sea, mountains and sky"
            return prompt
        if (" weather" in edit_action) or (" snow" in edit_action):
            prompt = "a naturalistic scene with trees"
            return prompt
        p = random.uniform(0, 1)
        if p < 0.5:
            prompt = random.choice(sub["scenes"])
            return prompt

    p = random.uniform(0, 1)
    person = ["view", "pose", "adj", "color", "human_age","people"]
    subject = ["view", "pose", "adj", "color", "animal_age", "subjects"]
    appends = [" of ", " ", " ", " ", " ", "."]
    attri_set = person if p < 0.7 else subject

    prompt = ""
    for i, key in enumerate(attri_set):
        attr = random.choice(sub[key])
        prompt = prompt + attr + appends[i]

    return prompt


def prepare_our_prompt_v0():
    """
        Prepare the prompt with our coverage, simple prompt, found good for person.
    """
    random.seed(0)
    data_root="/mlx/users/peng.wang/playground/data/chat_edit/assets/test200"
    edit_file = f"{data_root}/edit_class.txt"
    edit_lines = io_uts.load_lines(edit_file)

    sub_file = f"{data_root}/subject.yaml"
    sub = io_uts.load_yaml(sub_file)
    from_human = f"{data_root}/edit_instructions_v0.jsonl"

    # sample an item or empty each feature
    items = []
    for edit_line in tqdm(edit_lines): 
        class_name, edit_actions = edit_line.split(":")
        edit_actions = split_actions(edit_actions)
        for edit_action in edit_actions:
            prompt1 = sample_prompt(sub, class_name, edit_action)
            prompt = TEMPLATE_0.format(prompt1=prompt1, edit_action=edit_action)
            item = {}
            item["prompt_0"] = prompt
            item["class"] = class_name
            item["input"] = prompt1
            item["edit"] = edit_action
            item["output"] = f"{prompt1} with {edit_action}"
            items.append(item)

    print("number of examples:", len(items))
    io_uts.dump_jsonl(from_human, items)


def config_our_prompt_v1():
    # if region wise, let first find and locate the region. 
    pass


def config_our_prompt_v2():
    # if region wise, let first find and locate the region. 
    pass


def prepare_p2p_prompt_v0():
    test_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/test200/"
    cache_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/p2p700"
    jsonl_file = f"{test_root}instruct_p2p_700.jsonl"
    jsonl_file_out = f"{test_root}instruct_p2p_700_reformat.jsonl"

    def classify_p2p_edit_action():
        classifier = EditActionClassifier()
        examples = io_uts.load_jsonl(jsonl_file)
        examples_out = []
        for count, example in tqdm(enumerate(examples)):
            res_file = f"{cache_root}/{count}.json"
            if os.path.exists(res_file):
                example = io_uts.load_json(res_file)
                examples_out.append(example)
                continue

            edit_class = classifier.infer(example["edit"])
            example["class"] = edit_class
            example["prompt_0"] = TEMPLATE_0.format(prompt1=example["input"], edit_action=example["edit"])
            io_uts.dump_json(res_file, example)
            examples_out.append(example)

        io_uts.dump_jsonl(jsonl_file_out, examples_out)

    def subsample_p2p():
        jsonl_file_sample_out = f"{test_root}/instruct_p2p_val.jsonl"
        examples = io_uts.load_jsonl(jsonl_file_out)
        classes = {}
        results = []
        max_each_class = 1
        for example in examples:
            if example["class"] not in classes.keys():
                classes[example["class"]] = 1
                results.append(example)
            else:
                if classes[example["class"]] < max_each_class:
                    classes[example["class"]] += 1
                    results.append(example)
        print("sample num: ", len(results))
        io_uts.dump_jsonl(jsonl_file_sample_out, results)

    # classify_p2p_edit_action()
    subsample_p2p()


def prepare_emu_set():
    test_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/emu_test/"
    output_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/test200/"
    items = []
    files = v_uts.list_all_files(test_root, exts=["txt"])
    class_map = {
        "add": "Local,Add", 
        "background": "Global,Background",
        "color": "Global,Color",
        "global": "Global", 
        "local": "Local", 
        "remove": "Local,Remove", 
        "style": "Global,Stylization", 
        "text": "Local,Add,Text"
    }
    for edit_file in tqdm(files):
        edit_action = io_uts.load_lines(edit_file)
        item = {"input": edit_action[1], "edit": edit_action[0], "output": edit_action[2]}
        item["prompt_0"] = TEMPLATE_0.format(prompt1=item["input"], edit_action=item["edit"])
        class_name = edit_file.split('/')[-2]
        item["class"] = class_map[class_name]
        items.append(item)

    io_uts.dump_jsonl(f"{output_root}/emu_val_90.jsonl", items)


def merge_prompts():
    output_root="/mlx/users/peng.wang/playground/repo/instruct-pix2pix/data/chat_edit/assets/ChatEdit/"
    our_set = "edit_instructions_val"
    p2p_set = "instruct_p2p_val"
    emu_set = "emu_val_90"

    full_items = []
    for val_set in [our_set, p2p_set, emu_set]:
        items = io_uts.load_jsonl(f"{output_root}/{val_set}.jsonl")
        print(val_set, len(items))
        keynames = ["input", "edit", "output", "prompt_0", "class"]
        items_out = []
        for item in items:
            # reorder the item keys based on keynames 
            item_out = {}
            for key in keynames:
                item_out[key] = item[key]
            item_out["prompt_1"] = TEMPLATE_1.format(
                prompt1=item["input"], 
                prompt2=item['output'], 
                edit_action=item["edit"])
            item_out["prompt_2"] = TEMPLATE_2.format(
                prompt1=item["input"], 
                prompt2=item['output'], 
                edit_action=item["edit"])
            items_out.append(item_out)
        full_items = full_items + items_out
    print("num: ", len(full_items))
    io_uts.dump_jsonl(f"{output_root}/full_val.jsonl", full_items)

    
def classify_and_sample_p2p_prompts():
    pass


def write_dataset_toparquet():
    dataroot = "/mnt/bn/datacompv6/data/chat_edit/assets/ChatEdit/"
    jsonl_path = f"{dataroot}/full_val.jsonl"
    folder_name = "prompt_0"
    image_folder = f"{dataroot}/{folder_name}"
    output_path = f"{dataroot}/data/"
    v_uts.mkdir(output_path)

    items = io_uts.load_jsonl(jsonl_path)
    items_out = []
    for i, item in enumerate(tqdm(items)):
        image_path = f"{image_folder}/{i:03}.png"
        item['image_id'] = f"{i:03}"
        item['image'] = v_uts.encode_b64(image_path)
        items_out.append(item)

    # Convert the data to a pandas DataFrame
    df = pd.DataFrame(items_out)
    # Create a Hugging Face dataset from the DataFrame
    dataset = Dataset.from_pandas(df)
    # Save the dataset to a Parquet file
    dataset.to_parquet(f"{output_path}/{folder_name}.parquet")


if __name__ == '__main__':
    # res = "make firework/rainbow in sky/ground region in the image"
    # print(split_actions(res))
    # prepare_our_prompt_v0()
    # prepare_p2p_prompt_v0()
    # prepare_emu_set()
    # merge_prompts()
    write_dataset_toparquet()