Update app.py
Browse files
app.py
CHANGED
@@ -1,878 +1,20 @@
|
|
1 |
-
from collections import OrderedDict
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from email.mime import audio
|
4 |
-
from typing import Tuple, Union, Callable, Optional
|
5 |
|
6 |
-
import numpy as np
|
7 |
-
!pip install torch
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from torch import nn
|
11 |
|
12 |
-
|
13 |
-
import
|
14 |
-
from
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
from transformers import BertModel, RobertaModel, BartModel
|
19 |
-
from transformers.tokenization_utils_base import BatchEncoding
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
super(MLPLayers, self).__init__()
|
25 |
-
self.nonlin = nonlin
|
26 |
-
self.dropout = dropout
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
sequence.append(nn.Linear(u0, u1))
|
31 |
-
sequence.append(self.nonlin)
|
32 |
-
sequence.append(nn.Dropout(self.dropout))
|
33 |
-
sequence = sequence[:-2]
|
34 |
-
|
35 |
-
self.sequential = nn.Sequential(*sequence)
|
36 |
-
|
37 |
-
def forward(self, X):
|
38 |
-
X = self.sequential(X)
|
39 |
-
return X
|
40 |
-
|
41 |
-
|
42 |
-
class Bottleneck(nn.Module):
|
43 |
-
expansion = 4
|
44 |
-
|
45 |
-
def __init__(self, inplanes, planes, stride=1):
|
46 |
-
super().__init__()
|
47 |
-
|
48 |
-
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
49 |
-
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
50 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
51 |
-
|
52 |
-
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
53 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
54 |
-
|
55 |
-
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
56 |
-
|
57 |
-
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
58 |
-
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
59 |
-
|
60 |
-
self.relu = nn.ReLU(inplace=True)
|
61 |
-
self.downsample = None
|
62 |
-
self.stride = stride
|
63 |
-
|
64 |
-
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
65 |
-
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
66 |
-
self.downsample = nn.Sequential(
|
67 |
-
OrderedDict(
|
68 |
-
[
|
69 |
-
("-1", nn.AvgPool2d(stride)),
|
70 |
-
(
|
71 |
-
"0",
|
72 |
-
nn.Conv2d(
|
73 |
-
inplanes,
|
74 |
-
planes * self.expansion,
|
75 |
-
1,
|
76 |
-
stride=1,
|
77 |
-
bias=False,
|
78 |
-
),
|
79 |
-
),
|
80 |
-
("1", nn.BatchNorm2d(planes * self.expansion)),
|
81 |
-
]
|
82 |
-
)
|
83 |
-
)
|
84 |
-
|
85 |
-
def forward(self, x: torch.Tensor):
|
86 |
-
identity = x
|
87 |
-
|
88 |
-
out = self.relu(self.bn1(self.conv1(x)))
|
89 |
-
out = self.relu(self.bn2(self.conv2(out)))
|
90 |
-
out = self.avgpool(out)
|
91 |
-
out = self.bn3(self.conv3(out))
|
92 |
-
|
93 |
-
if self.downsample is not None:
|
94 |
-
identity = self.downsample(x)
|
95 |
-
|
96 |
-
out += identity
|
97 |
-
out = self.relu(out)
|
98 |
-
return out
|
99 |
-
|
100 |
-
|
101 |
-
class AttentionPool2d(nn.Module):
|
102 |
-
def __init__(
|
103 |
-
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
|
104 |
-
):
|
105 |
-
super().__init__()
|
106 |
-
self.positional_embedding = nn.Parameter(
|
107 |
-
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
|
108 |
-
)
|
109 |
-
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
110 |
-
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
111 |
-
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
112 |
-
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
113 |
-
self.num_heads = num_heads
|
114 |
-
|
115 |
-
def forward(self, x):
|
116 |
-
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
|
117 |
-
2, 0, 1
|
118 |
-
) # NCHW -> (HW)NC
|
119 |
-
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
120 |
-
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
121 |
-
x, _ = F.multi_head_attention_forward(
|
122 |
-
query=x,
|
123 |
-
key=x,
|
124 |
-
value=x,
|
125 |
-
embed_dim_to_check=x.shape[-1],
|
126 |
-
num_heads=self.num_heads,
|
127 |
-
q_proj_weight=self.q_proj.weight,
|
128 |
-
k_proj_weight=self.k_proj.weight,
|
129 |
-
v_proj_weight=self.v_proj.weight,
|
130 |
-
in_proj_weight=None,
|
131 |
-
in_proj_bias=torch.cat(
|
132 |
-
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
|
133 |
-
),
|
134 |
-
bias_k=None,
|
135 |
-
bias_v=None,
|
136 |
-
add_zero_attn=False,
|
137 |
-
dropout_p=0,
|
138 |
-
out_proj_weight=self.c_proj.weight,
|
139 |
-
out_proj_bias=self.c_proj.bias,
|
140 |
-
use_separate_proj_weight=True,
|
141 |
-
training=self.training,
|
142 |
-
need_weights=False,
|
143 |
-
)
|
144 |
-
|
145 |
-
return x[0]
|
146 |
-
|
147 |
-
|
148 |
-
class ModifiedResNet(nn.Module):
|
149 |
-
"""
|
150 |
-
A ResNet class that is similar to torchvision's but contains the following changes:
|
151 |
-
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
152 |
-
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
153 |
-
- The final pooling layer is a QKV attention instead of an average pool
|
154 |
-
"""
|
155 |
-
|
156 |
-
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
157 |
-
super().__init__()
|
158 |
-
self.output_dim = output_dim
|
159 |
-
self.image_size = image_size
|
160 |
-
|
161 |
-
# the 3-layer stem
|
162 |
-
self.conv1 = nn.Conv2d(
|
163 |
-
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
|
164 |
-
)
|
165 |
-
self.bn1 = nn.BatchNorm2d(width // 2)
|
166 |
-
self.conv2 = nn.Conv2d(
|
167 |
-
width // 2, width // 2, kernel_size=3, padding=1, bias=False
|
168 |
-
)
|
169 |
-
self.bn2 = nn.BatchNorm2d(width // 2)
|
170 |
-
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
171 |
-
self.bn3 = nn.BatchNorm2d(width)
|
172 |
-
self.avgpool = nn.AvgPool2d(2)
|
173 |
-
self.relu = nn.ReLU(inplace=True)
|
174 |
-
|
175 |
-
# residual layers
|
176 |
-
self._inplanes = width # this is a *mutable* variable used during construction
|
177 |
-
self.layer1 = self._make_layer(width, layers[0])
|
178 |
-
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
179 |
-
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
180 |
-
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
181 |
-
|
182 |
-
embed_dim = width * 32 # the ResNet feature dimension
|
183 |
-
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
184 |
-
|
185 |
-
self.init_parameters()
|
186 |
-
|
187 |
-
def _make_layer(self, planes, blocks, stride=1):
|
188 |
-
layers = [Bottleneck(self._inplanes, planes, stride)]
|
189 |
-
|
190 |
-
self._inplanes = planes * Bottleneck.expansion
|
191 |
-
for _ in range(1, blocks):
|
192 |
-
layers.append(Bottleneck(self._inplanes, planes))
|
193 |
-
|
194 |
-
return nn.Sequential(*layers)
|
195 |
-
|
196 |
-
def init_parameters(self):
|
197 |
-
if self.attnpool is not None:
|
198 |
-
std = self.attnpool.c_proj.in_features**-0.5
|
199 |
-
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
200 |
-
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
201 |
-
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
202 |
-
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
203 |
-
|
204 |
-
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
205 |
-
for name, param in resnet_block.named_parameters():
|
206 |
-
if name.endswith("bn3.weight"):
|
207 |
-
nn.init.zeros_(param)
|
208 |
-
|
209 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
210 |
-
assert (
|
211 |
-
unlocked_groups == 0
|
212 |
-
), "partial locking not currently supported for this model"
|
213 |
-
for param in self.parameters():
|
214 |
-
param.requires_grad = False
|
215 |
-
if freeze_bn_stats:
|
216 |
-
freeze_batch_norm_2d(self)
|
217 |
-
|
218 |
-
def stem(self, x):
|
219 |
-
for conv, bn in [
|
220 |
-
(self.conv1, self.bn1),
|
221 |
-
(self.conv2, self.bn2),
|
222 |
-
(self.conv3, self.bn3),
|
223 |
-
]:
|
224 |
-
x = self.relu(bn(conv(x)))
|
225 |
-
x = self.avgpool(x)
|
226 |
-
return x
|
227 |
-
|
228 |
-
def forward(self, x):
|
229 |
-
x = self.stem(x)
|
230 |
-
x = self.layer1(x)
|
231 |
-
x = self.layer2(x)
|
232 |
-
x = self.layer3(x)
|
233 |
-
x = self.layer4(x)
|
234 |
-
x = self.attnpool(x)
|
235 |
-
|
236 |
-
return x
|
237 |
-
|
238 |
-
|
239 |
-
class LayerNorm(nn.LayerNorm):
|
240 |
-
"""Subclass torch's LayerNorm to handle fp16."""
|
241 |
-
|
242 |
-
def forward(self, x: torch.Tensor):
|
243 |
-
orig_type = x.dtype
|
244 |
-
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
245 |
-
return x.to(orig_type)
|
246 |
-
|
247 |
-
|
248 |
-
class QuickGELU(nn.Module):
|
249 |
-
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
250 |
-
def forward(self, x: torch.Tensor):
|
251 |
-
return x * torch.sigmoid(1.702 * x)
|
252 |
-
|
253 |
-
|
254 |
-
class ResidualAttentionBlock(nn.Module):
|
255 |
-
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
|
256 |
-
super().__init__()
|
257 |
-
|
258 |
-
self.attn = nn.MultiheadAttention(d_model, n_head)
|
259 |
-
self.ln_1 = LayerNorm(d_model)
|
260 |
-
self.mlp = nn.Sequential(
|
261 |
-
OrderedDict(
|
262 |
-
[
|
263 |
-
("c_fc", nn.Linear(d_model, d_model * 4)),
|
264 |
-
("gelu", act_layer()),
|
265 |
-
("c_proj", nn.Linear(d_model * 4, d_model)),
|
266 |
-
]
|
267 |
-
)
|
268 |
-
)
|
269 |
-
self.ln_2 = LayerNorm(d_model)
|
270 |
-
|
271 |
-
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
272 |
-
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
273 |
-
|
274 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
275 |
-
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
|
276 |
-
x = x + self.mlp(self.ln_2(x))
|
277 |
-
return x
|
278 |
-
|
279 |
-
|
280 |
-
class Transformer(nn.Module):
|
281 |
-
def __init__(
|
282 |
-
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
|
283 |
-
):
|
284 |
-
super().__init__()
|
285 |
-
self.width = width
|
286 |
-
self.layers = layers
|
287 |
-
self.resblocks = nn.ModuleList(
|
288 |
-
[
|
289 |
-
ResidualAttentionBlock(width, heads, act_layer=act_layer)
|
290 |
-
for _ in range(layers)
|
291 |
-
]
|
292 |
-
)
|
293 |
-
|
294 |
-
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
295 |
-
for r in self.resblocks:
|
296 |
-
x = r(x, attn_mask=attn_mask)
|
297 |
-
return x
|
298 |
-
|
299 |
-
|
300 |
-
class VisualTransformer(nn.Module):
|
301 |
-
def __init__(
|
302 |
-
self,
|
303 |
-
image_size: int,
|
304 |
-
patch_size: int,
|
305 |
-
width: int,
|
306 |
-
layers: int,
|
307 |
-
heads: int,
|
308 |
-
output_dim: int,
|
309 |
-
act_layer: Callable = nn.GELU,
|
310 |
-
):
|
311 |
-
super().__init__()
|
312 |
-
self.image_size = image_size
|
313 |
-
self.output_dim = output_dim
|
314 |
-
self.conv1 = nn.Conv2d(
|
315 |
-
in_channels=3,
|
316 |
-
out_channels=width,
|
317 |
-
kernel_size=patch_size,
|
318 |
-
stride=patch_size,
|
319 |
-
bias=False,
|
320 |
-
)
|
321 |
-
|
322 |
-
scale = width**-0.5
|
323 |
-
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
324 |
-
self.positional_embedding = nn.Parameter(
|
325 |
-
scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
|
326 |
-
)
|
327 |
-
self.ln_pre = LayerNorm(width)
|
328 |
-
|
329 |
-
self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
|
330 |
-
|
331 |
-
self.ln_post = LayerNorm(width)
|
332 |
-
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
333 |
-
|
334 |
-
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
335 |
-
assert (
|
336 |
-
unlocked_groups == 0
|
337 |
-
), "partial locking not currently supported for this model"
|
338 |
-
for param in self.parameters():
|
339 |
-
param.requires_grad = False
|
340 |
-
|
341 |
-
def forward(self, x: torch.Tensor):
|
342 |
-
x = self.conv1(x) # shape = [*, width, grid, grid]
|
343 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
344 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
345 |
-
x = torch.cat(
|
346 |
-
[
|
347 |
-
self.class_embedding.to(x.dtype)
|
348 |
-
+ torch.zeros(
|
349 |
-
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
350 |
-
),
|
351 |
-
x,
|
352 |
-
],
|
353 |
-
dim=1,
|
354 |
-
) # shape = [*, grid ** 2 + 1, width]
|
355 |
-
x = x + self.positional_embedding.to(x.dtype)
|
356 |
-
x = self.ln_pre(x)
|
357 |
-
|
358 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
359 |
-
x = self.text_branch(x)
|
360 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
361 |
-
|
362 |
-
x = self.ln_post(x[:, 0, :])
|
363 |
-
|
364 |
-
if self.proj is not None:
|
365 |
-
x = x @ self.proj
|
366 |
-
|
367 |
-
return x
|
368 |
-
|
369 |
-
|
370 |
-
@dataclass
|
371 |
-
class CLAPVisionCfg:
|
372 |
-
layers: Union[Tuple[int, int, int, int], int] = 12
|
373 |
-
width: int = 768
|
374 |
-
patch_size: int = 16
|
375 |
-
image_size: Union[Tuple[int, int], int] = 224
|
376 |
-
timm_model_name: str = (
|
377 |
-
None # a valid model name overrides layers, width, patch_size
|
378 |
-
)
|
379 |
-
timm_model_pretrained: bool = (
|
380 |
-
False # use (imagenet) pretrained weights for named model
|
381 |
-
)
|
382 |
-
timm_pool: str = (
|
383 |
-
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
384 |
-
)
|
385 |
-
timm_proj: str = (
|
386 |
-
"linear" # linear projection for timm model output ('linear', 'mlp', '')
|
387 |
-
)
|
388 |
-
|
389 |
-
|
390 |
-
# Audio Config Class
|
391 |
-
@dataclass
|
392 |
-
class CLAPAudioCfp:
|
393 |
-
model_type: str = "PANN"
|
394 |
-
model_name: str = "Cnn14"
|
395 |
-
sample_rate: int = 48000
|
396 |
-
# Param
|
397 |
-
audio_length: int = 1024
|
398 |
-
window_size: int = 1024
|
399 |
-
hop_size: int = 1024
|
400 |
-
fmin: int = 50
|
401 |
-
fmax: int = 14000
|
402 |
-
class_num: int = 527
|
403 |
-
mel_bins: int = 64
|
404 |
-
clip_samples: int = 480000
|
405 |
-
|
406 |
-
|
407 |
-
@dataclass
|
408 |
-
class CLAPTextCfg:
|
409 |
-
context_length: int
|
410 |
-
vocab_size: int
|
411 |
-
width: int
|
412 |
-
heads: int
|
413 |
-
layers: int
|
414 |
-
model_type: str
|
415 |
-
|
416 |
-
|
417 |
-
class CLAP(nn.Module):
|
418 |
-
def __init__(
|
419 |
-
self,
|
420 |
-
embed_dim: int,
|
421 |
-
audio_cfg: CLAPAudioCfp,
|
422 |
-
text_cfg: CLAPTextCfg,
|
423 |
-
quick_gelu: bool = False,
|
424 |
-
enable_fusion: bool = False,
|
425 |
-
fusion_type: str = 'None',
|
426 |
-
joint_embed_shape: int = 512,
|
427 |
-
mlp_act: str = 'relu',
|
428 |
-
):
|
429 |
-
super().__init__()
|
430 |
-
if isinstance(audio_cfg, dict):
|
431 |
-
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
432 |
-
if isinstance(text_cfg, dict):
|
433 |
-
text_cfg = CLAPTextCfg(**text_cfg)
|
434 |
-
|
435 |
-
self.audio_cfg = audio_cfg
|
436 |
-
self.text_cfg = text_cfg
|
437 |
-
self.enable_fusion = enable_fusion
|
438 |
-
self.fusion_type = fusion_type
|
439 |
-
self.joint_embed_shape = joint_embed_shape
|
440 |
-
self.mlp_act = mlp_act
|
441 |
-
|
442 |
-
|
443 |
-
self.context_length = text_cfg.context_length
|
444 |
-
|
445 |
-
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
446 |
-
# memory efficient in recent PyTorch releases (>= 1.10).
|
447 |
-
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
448 |
-
act_layer = QuickGELU if quick_gelu else nn.GELU
|
449 |
-
|
450 |
-
if mlp_act == 'relu':
|
451 |
-
mlp_act_layer = nn.ReLU()
|
452 |
-
elif mlp_act == 'gelu':
|
453 |
-
mlp_act_layer = nn.GELU()
|
454 |
-
else:
|
455 |
-
raise NotImplementedError
|
456 |
-
|
457 |
-
# audio branch
|
458 |
-
# audio branch parameters
|
459 |
-
if audio_cfg.model_type == "PANN":
|
460 |
-
self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
|
461 |
-
elif audio_cfg.model_type == "HTSAT":
|
462 |
-
self.audio_branch = create_htsat_model(audio_cfg, enable_fusion, fusion_type)
|
463 |
-
else:
|
464 |
-
logging.error(f"Model config for {audio_cfg.model_type} not found")
|
465 |
-
raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
|
466 |
-
|
467 |
-
# text branch
|
468 |
-
# text branch parameters
|
469 |
-
if text_cfg.model_type == "transformer":
|
470 |
-
self.text_branch = Transformer(
|
471 |
-
width=text_cfg.width,
|
472 |
-
layers=text_cfg.layers,
|
473 |
-
heads=text_cfg.heads,
|
474 |
-
act_layer=act_layer,
|
475 |
-
)
|
476 |
-
self.vocab_size = text_cfg.vocab_size
|
477 |
-
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
|
478 |
-
self.positional_embedding = nn.Parameter(
|
479 |
-
torch.empty(self.context_length, text_cfg.width)
|
480 |
-
)
|
481 |
-
self.ln_final = LayerNorm(text_cfg.width)
|
482 |
-
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
483 |
-
self.joint_embed_shape,
|
484 |
-
self.joint_embed_shape], dropout=0.1)
|
485 |
-
self.text_projection = nn.Sequential(
|
486 |
-
nn.Linear(text_cfg.width, self.joint_embed_shape),
|
487 |
-
mlp_act_layer,
|
488 |
-
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
489 |
-
)
|
490 |
-
elif text_cfg.model_type == "bert":
|
491 |
-
self.text_branch = BertModel.from_pretrained("bert-base-uncased")
|
492 |
-
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
493 |
-
self.joint_embed_shape,
|
494 |
-
self.joint_embed_shape], dropout=0.1)
|
495 |
-
self.text_projection = nn.Sequential(
|
496 |
-
nn.Linear(768, self.joint_embed_shape),
|
497 |
-
mlp_act_layer,
|
498 |
-
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
499 |
-
)
|
500 |
-
elif text_cfg.model_type == "roberta":
|
501 |
-
self.text_branch = RobertaModel.from_pretrained('roberta-base')
|
502 |
-
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
503 |
-
self.joint_embed_shape,
|
504 |
-
self.joint_embed_shape], dropout=0.1)
|
505 |
-
self.text_projection = nn.Sequential(
|
506 |
-
nn.Linear(768, self.joint_embed_shape),
|
507 |
-
mlp_act_layer,
|
508 |
-
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
509 |
-
)
|
510 |
-
elif text_cfg.model_type == "bart":
|
511 |
-
self.text_branch = BartModel.from_pretrained('facebook/bart-base')
|
512 |
-
self.text_transform = MLPLayers(units=[self.joint_embed_shape,
|
513 |
-
self.joint_embed_shape,
|
514 |
-
self.joint_embed_shape], dropout=0.1)
|
515 |
-
self.text_projection = nn.Sequential(
|
516 |
-
nn.Linear(768, self.joint_embed_shape),
|
517 |
-
mlp_act_layer,
|
518 |
-
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
519 |
-
)
|
520 |
-
else:
|
521 |
-
logging.error(f"Model config for {text_cfg.model_type} not found")
|
522 |
-
raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
|
523 |
-
self.text_branch_type = text_cfg.model_type
|
524 |
-
# text branch parameters
|
525 |
-
|
526 |
-
# audio branch parameters
|
527 |
-
self.audio_transform = MLPLayers(units=[self.joint_embed_shape,
|
528 |
-
self.joint_embed_shape,
|
529 |
-
self.joint_embed_shape], dropout=0.1)
|
530 |
-
|
531 |
-
# below here is text branch parameters
|
532 |
-
|
533 |
-
# ============================================================================================================
|
534 |
-
self.audio_projection = nn.Sequential(
|
535 |
-
nn.Linear(embed_dim, self.joint_embed_shape),
|
536 |
-
mlp_act_layer,
|
537 |
-
nn.Linear(self.joint_embed_shape, self.joint_embed_shape)
|
538 |
-
)
|
539 |
-
|
540 |
-
self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
541 |
-
self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
542 |
-
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
|
543 |
-
|
544 |
-
self.init_text_branch_parameters()
|
545 |
-
|
546 |
-
def init_text_branch_parameters(self):
|
547 |
-
if self.text_branch_type == "transformer":
|
548 |
-
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
549 |
-
nn.init.normal_(self.positional_embedding, std=0.01)
|
550 |
-
proj_std = (self.text_branch.width**-0.5) * (
|
551 |
-
(2 * self.text_branch.layers) ** -0.5
|
552 |
-
)
|
553 |
-
attn_std = self.text_branch.width**-0.5
|
554 |
-
fc_std = (2 * self.text_branch.width) ** -0.5
|
555 |
-
for block in self.text_branch.resblocks:
|
556 |
-
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
557 |
-
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
558 |
-
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
559 |
-
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
560 |
-
if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
|
561 |
-
width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
|
562 |
-
elif self.text_branch_type == "bart":
|
563 |
-
width = self.text_branch.shared.weight.shape[-1]
|
564 |
-
else:
|
565 |
-
width = self.text_branch.width
|
566 |
-
nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
|
567 |
-
nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
|
568 |
-
|
569 |
-
# deprecated
|
570 |
-
# if hasattr(self.visual, 'init_parameters'):
|
571 |
-
# self.visual.init_parameters()
|
572 |
-
|
573 |
-
# if self.text_projection is not None:
|
574 |
-
# nn.init.normal_(self.text_projection, std=width**-0.5)
|
575 |
-
|
576 |
-
def build_attention_mask(self):
|
577 |
-
# lazily create causal attention mask, with full attention between the vision tokens
|
578 |
-
# pytorch uses additive attention mask; fill with -inf
|
579 |
-
mask = torch.empty(self.context_length, self.context_length)
|
580 |
-
mask.fill_(float("-inf"))
|
581 |
-
mask.triu_(1) # zero out the lower diagonal
|
582 |
-
return mask
|
583 |
-
|
584 |
-
def encode_audio(self, audio, device):
|
585 |
-
return self.audio_branch(audio, mixup_lambda=None, device=device) # mix lambda needs to add
|
586 |
-
|
587 |
-
# def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
|
588 |
-
# tmp = {}
|
589 |
-
# for k in x[0].keys():
|
590 |
-
# tmp[k] = []
|
591 |
-
# for i in range(len(x)):
|
592 |
-
# tmp[k].append(x[i][k][:77])
|
593 |
-
# for k in x[0].keys():
|
594 |
-
# tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
|
595 |
-
# return tmp
|
596 |
-
|
597 |
-
def encode_text(self, text, device):
|
598 |
-
if self.text_branch_type == "transformer":
|
599 |
-
text = text.to(device=device, non_blocking=True)
|
600 |
-
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
|
601 |
-
|
602 |
-
x = x + self.positional_embedding
|
603 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
604 |
-
x = self.text_branch(x, attn_mask=self.attn_mask)
|
605 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
606 |
-
x = self.ln_final(x)
|
607 |
-
|
608 |
-
# x.shape = [batch_size, n_ctx, transformer.width]
|
609 |
-
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
610 |
-
x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
|
611 |
-
elif self.text_branch_type == "bert":
|
612 |
-
# text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
|
613 |
-
# text = BatchEncoding(text)
|
614 |
-
x = self.text_branch(
|
615 |
-
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
616 |
-
attention_mask=text["attention_mask"].to(
|
617 |
-
device=device, non_blocking=True
|
618 |
-
),
|
619 |
-
token_type_ids=text["token_type_ids"].to(
|
620 |
-
device=device, non_blocking=True
|
621 |
-
),
|
622 |
-
)["pooler_output"]
|
623 |
-
x = self.text_projection(x)
|
624 |
-
elif self.text_branch_type == "roberta":
|
625 |
-
x = self.text_branch(
|
626 |
-
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
627 |
-
attention_mask=text["attention_mask"].to(
|
628 |
-
device=device, non_blocking=True
|
629 |
-
),
|
630 |
-
)["pooler_output"]
|
631 |
-
x = self.text_projection(x)
|
632 |
-
elif self.text_branch_type == "bart":
|
633 |
-
x = torch.mean(self.text_branch(
|
634 |
-
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
635 |
-
attention_mask=text["attention_mask"].to(
|
636 |
-
device=device, non_blocking=True
|
637 |
-
),
|
638 |
-
)["encoder_last_hidden_state"],axis=1)
|
639 |
-
x = self.text_projection(x)
|
640 |
-
else:
|
641 |
-
logging.error(f"Model type {self.text_branch_type} not found")
|
642 |
-
raise RuntimeError(f"Model type {self.text_branch_type} not found.")
|
643 |
-
return x
|
644 |
-
|
645 |
-
def forward(self, audio, text, device=None):
|
646 |
-
"""Forward audio and text into the CLAP
|
647 |
-
Parameters
|
648 |
-
----------
|
649 |
-
audio: torch.Tensor (batch_size, audio_length)
|
650 |
-
the time-domain audio input / the batch of mel_spec and longer list.
|
651 |
-
text: torch.Tensor () // need to add
|
652 |
-
the text token input
|
653 |
-
"""
|
654 |
-
if device is None:
|
655 |
-
if audio is not None:
|
656 |
-
device = audio.device
|
657 |
-
elif text is not None:
|
658 |
-
device = text.device
|
659 |
-
if audio is None and text is None:
|
660 |
-
# a hack to get the logit scale
|
661 |
-
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
662 |
-
elif audio is None:
|
663 |
-
return self.encode_text(text, device=device)
|
664 |
-
elif text is None:
|
665 |
-
return self.audio_projection(self.encode_audio(audio, device=device)["embedding"])
|
666 |
-
audio_features = self.audio_projection(self.encode_audio(audio, device=device)["embedding"])
|
667 |
-
audio_features = F.normalize(audio_features, dim=-1)
|
668 |
-
|
669 |
-
text_features = self.encode_text(
|
670 |
-
text, device=device
|
671 |
-
)
|
672 |
-
# print("text_features", text_features)
|
673 |
-
# print("text_features.shape", text_features.shape)
|
674 |
-
# print("text_features.type", type(text_features))
|
675 |
-
text_features = F.normalize(text_features, dim=-1)
|
676 |
-
|
677 |
-
audio_features_mlp = self.audio_transform(audio_features)
|
678 |
-
text_features_mlp = self.text_transform(text_features)
|
679 |
-
# Four outputs: audio features (basic & MLP), text features (basic & MLP)
|
680 |
-
return (
|
681 |
-
audio_features,
|
682 |
-
text_features,
|
683 |
-
audio_features_mlp,
|
684 |
-
text_features_mlp,
|
685 |
-
self.logit_scale_a.exp(),
|
686 |
-
self.logit_scale_t.exp(),
|
687 |
-
)
|
688 |
-
|
689 |
-
def get_logit_scale(self):
|
690 |
-
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
691 |
-
|
692 |
-
def get_text_embedding(self, data):
|
693 |
-
"""Get the text embedding from the model
|
694 |
-
Parameters
|
695 |
-
----------
|
696 |
-
data: torch.Tensor
|
697 |
-
a tensor of text embedding
|
698 |
-
Returns
|
699 |
-
----------
|
700 |
-
text_embed: torch.Tensor
|
701 |
-
a tensor of text_embeds (N, D)
|
702 |
-
"""
|
703 |
-
device = next(self.parameters()).device
|
704 |
-
for k in data:
|
705 |
-
data[k] = data[k].to(device)
|
706 |
-
text_embeds = self.encode_text(data, device=device)
|
707 |
-
text_embeds = F.normalize(text_embeds, dim=-1)
|
708 |
-
|
709 |
-
return text_embeds
|
710 |
-
|
711 |
-
def get_audio_embedding(self, data):
|
712 |
-
"""Get the audio embedding from the model
|
713 |
-
Parameters
|
714 |
-
----------
|
715 |
-
data: a list of dict
|
716 |
-
the audio input dict list from 'get_audio_feature' method
|
717 |
-
Returns
|
718 |
-
----------
|
719 |
-
audio_embed: torch.Tensor
|
720 |
-
a tensor of audio_embeds (N, D)
|
721 |
-
"""
|
722 |
-
device = next(self.parameters()).device
|
723 |
-
input_dict = {}
|
724 |
-
keys = data[0].keys()
|
725 |
-
for k in keys:
|
726 |
-
input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(device)
|
727 |
-
|
728 |
-
audio_embeds = self.audio_projection(self.encode_audio(input_dict, device=device)["embedding"])
|
729 |
-
audio_embeds = F.normalize(audio_embeds, dim=-1)
|
730 |
-
|
731 |
-
return audio_embeds
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
def audio_infer(self, audio, hopsize=None, device=None):
|
736 |
-
"""Forward one audio and produce the audio embedding
|
737 |
-
Parameters
|
738 |
-
----------
|
739 |
-
audio: (audio_length)
|
740 |
-
the time-domain audio input, notice that it must be only one input
|
741 |
-
hopsize: int
|
742 |
-
the overlap hopsize as the sliding window
|
743 |
-
Returns
|
744 |
-
----------
|
745 |
-
output_dict: {
|
746 |
-
key: [n, (embedding_shape)] if "HTS-AT"
|
747 |
-
or
|
748 |
-
key: [(embedding_shape)] if "PANN"
|
749 |
-
}
|
750 |
-
the list of key values of the audio branch
|
751 |
-
"""
|
752 |
-
|
753 |
-
assert not self.training, "the inference mode must be run at eval stage"
|
754 |
-
output_dict = {}
|
755 |
-
# PANN
|
756 |
-
if self.audio_cfg.model_type == "PANN":
|
757 |
-
audio_input = audio.unsqueeze(dim=0)
|
758 |
-
output_dict[key] = self.encode_audio(audio_input, device=device)[key].squeeze(dim=0)
|
759 |
-
elif self.audio_cfg.model_type == "HTSAT":
|
760 |
-
# repeat
|
761 |
-
audio_len = len(audio)
|
762 |
-
k = self.audio_cfg.clip_samples // audio_len
|
763 |
-
if k > 1:
|
764 |
-
audio = audio.repeat(k)
|
765 |
-
audio_len = len(audio)
|
766 |
-
|
767 |
-
if hopsize is None:
|
768 |
-
hopsize = min(hopsize, audio_len)
|
769 |
-
|
770 |
-
if audio_len > self.audio_cfg.clip_samples:
|
771 |
-
audio_input = [
|
772 |
-
audio[pos : pos + self.audio_cfg.clip_samples].clone()
|
773 |
-
for pos in range(
|
774 |
-
0, audio_len - self.audio_cfg.clip_samples, hopsize
|
775 |
-
)
|
776 |
-
]
|
777 |
-
audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
|
778 |
-
audio_input = torch.stack(audio_input)
|
779 |
-
output_dict[key] = self.encode_audio(audio_input, device=device)[key]
|
780 |
-
else:
|
781 |
-
audio_input = audio.unsqueeze(dim=0)
|
782 |
-
output_dict[key] = self.encode_audio(audio_input, device=device)[key].squeeze(dim=0)
|
783 |
-
|
784 |
-
return output_dict
|
785 |
-
|
786 |
-
|
787 |
-
def convert_weights_to_fp16(model: nn.Module):
|
788 |
-
"""Convert applicable model parameters to fp16"""
|
789 |
-
|
790 |
-
def _convert_weights_to_fp16(l):
|
791 |
-
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
792 |
-
l.weight.data = l.weight.data.half()
|
793 |
-
if l.bias is not None:
|
794 |
-
l.bias.data = l.bias.data.half()
|
795 |
-
|
796 |
-
if isinstance(l, nn.MultiheadAttention):
|
797 |
-
for attr in [
|
798 |
-
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
799 |
-
"in_proj_bias",
|
800 |
-
"bias_k",
|
801 |
-
"bias_v",
|
802 |
-
]:
|
803 |
-
tensor = getattr(l, attr)
|
804 |
-
if tensor is not None:
|
805 |
-
tensor.data = tensor.data.half()
|
806 |
-
|
807 |
-
for name in ["text_projection", "proj"]:
|
808 |
-
if hasattr(l, name):
|
809 |
-
attr = getattr(l, name)
|
810 |
-
if attr is not None:
|
811 |
-
attr.data = attr.data.half()
|
812 |
-
|
813 |
-
model.apply(_convert_weights_to_fp16)
|
814 |
-
|
815 |
-
|
816 |
-
# Ignore the state dict of the vision part
|
817 |
-
def build_model_from_openai_state_dict(state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = 'None'):
|
818 |
-
|
819 |
-
embed_dim = model_cfg["embed_dim"]
|
820 |
-
audio_cfg = model_cfg["audio_cfg"]
|
821 |
-
text_cfg = model_cfg["text_cfg"]
|
822 |
-
context_length = state_dict["positional_embedding"].shape[0]
|
823 |
-
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
824 |
-
transformer_width = state_dict["ln_final.weight"].shape[0]
|
825 |
-
transformer_heads = transformer_width // 64
|
826 |
-
transformer_layers = len(
|
827 |
-
set(
|
828 |
-
k.split(".")[2]
|
829 |
-
for k in state_dict
|
830 |
-
if k.startswith(f"transformer.resblocks")
|
831 |
-
)
|
832 |
-
)
|
833 |
-
|
834 |
-
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
835 |
-
text_cfg = CLAPTextCfg(**text_cfg)
|
836 |
-
|
837 |
-
model = CLAP(
|
838 |
-
embed_dim,
|
839 |
-
audio_cfg=audio_cfg,
|
840 |
-
text_cfg=text_cfg,
|
841 |
-
quick_gelu=True, # OpenAI models were trained with QuickGELU
|
842 |
-
enable_fusion=enable_fusion,
|
843 |
-
fusion_type=fusion_type
|
844 |
-
)
|
845 |
-
state_dict["logit_scale_a"] = state_dict["logit_scale"]
|
846 |
-
state_dict["logit_scale_t"] = state_dict["logit_scale"]
|
847 |
-
pop_keys = list(state_dict.keys())[::]
|
848 |
-
# pop the visual branch saved weights
|
849 |
-
for key in pop_keys:
|
850 |
-
if key.startswith("visual."):
|
851 |
-
state_dict.pop(key, None)
|
852 |
-
|
853 |
-
for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
|
854 |
-
state_dict.pop(key, None)
|
855 |
-
|
856 |
-
# not use fp16
|
857 |
-
# convert_weights_to_fp16(model)
|
858 |
-
model.load_state_dict(state_dict, strict=False)
|
859 |
-
return model.eval()
|
860 |
-
|
861 |
-
|
862 |
-
def trace_model(model, batch_size=256, device=torch.device("cpu")):
|
863 |
-
model.eval()
|
864 |
-
audio_length = model.audio_cfg.audio_length
|
865 |
-
example_audio = torch.ones((batch_size, audio_length), device=device)
|
866 |
-
example_text = torch.zeros(
|
867 |
-
(batch_size, model.context_length), dtype=torch.int, device=device
|
868 |
-
)
|
869 |
-
model = torch.jit.trace_module(
|
870 |
-
model,
|
871 |
-
inputs=dict(
|
872 |
-
forward=(example_audio, example_text),
|
873 |
-
encode_text=(example_text,),
|
874 |
-
encode_image=(example_audio,),
|
875 |
-
),
|
876 |
-
)
|
877 |
-
model.audio_cfg.audio_length = audio_length # Question: what does this do?
|
878 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
from natsort import natsorted
|
6 |
|
7 |
+
image_folder = '/Users/playment/Parth /Codes/data'
|
8 |
+
video_name = '/Users/playment/Parth /Codes/AI_VideoEditing/video.avi'
|
|
|
|
|
9 |
|
10 |
+
images = [img for img in os.listdir(image_folder) if img.endswith(".jpg")]
|
11 |
+
frame = cv2.imread(os.path.join(image_folder, images[0]))
|
12 |
+
height, width, layers = frame.shape
|
13 |
+
images = natsorted(images)
|
14 |
+
video = cv2.VideoWriter(video_name, 0, 60, (width,height))
|
15 |
|
16 |
+
for image in images:
|
17 |
+
video.write(cv2.imread(os.path.join(image_folder, image)))
|
|
|
|
|
|
|
18 |
|
19 |
+
cv2.destroyAllWindows()
|
20 |
+
video.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|