Mudrock commited on
Commit
1c0e346
·
1 Parent(s): acfe6dc

Delete config.py

Browse files
Files changed (1) hide show
  1. config.py +0 -62
config.py DELETED
@@ -1,62 +0,0 @@
1
- # Ke Chen
2
3
- # Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data
4
- # The configuration file
5
-
6
- # for model training
7
- exp_name = "exp_zs_asp_full" # the saved ckpt prefix name of the model
8
- workspace = "/home/Research/ZS_ASP/" # the folder of your code
9
- dataset_path = "/home/Research/ZS_ASP/data/audioset" # the dataset path
10
- index_type = "full_train"
11
- idc_path = "/home/Research/ZS_ASP/" # the folder of audioset class count files
12
- balanced_data = True
13
-
14
- # trained from a checkpoint, or evaluate a single model
15
- resume_checkpoint = None
16
- # "/home/Research/ZS_ASP/model_backup/zeroshot_asp_full.ckpt"
17
-
18
- loss_type = "mae"
19
-
20
- gather_mode = False
21
- debug = False
22
-
23
- classes_num = 527
24
- eval_list = [] # left blank to preserve all classes, otherwise will filter the specified classes
25
- # [15, 63, 81, 184, 335, 449, 474, 348, 486, 4] # randomly generated from the 527-classes for held-out evaludation
26
-
27
-
28
- batch_size = 16 * 8 # batch size per GPU x GPU number , default is 16 x 8 = 128
29
- learning_rate = 1e-3 # 3e-4 is also workable
30
- max_epoch = 100
31
- num_workers = 3
32
- lr_scheduler_epoch = [90, 110]
33
- latent_dim = 2048
34
-
35
- # for signal processing
36
- sample_rate = 32000
37
- clip_samples = sample_rate * 10 # audio_set 10-sec clip
38
- segment_frames = 200
39
- hop_samples = 320
40
- random_seed = 12412 # 444612 1536123 12412
41
- random_mode = "one_class" # "no_random, one_class, random, order", one class is the best
42
-
43
- # for evaluation
44
- musdb_path = "/home/Research/ZS_ASP/data/musdb-wav/" # musdb download folder
45
- testavg_path = "/home/Research/ZS_ASP/data/musdb30-train-32000fs.npy" # the processed training set (to get the latent query)
46
- testset_path = "/home/Research/ZS_ASP/data/musdb-test-32000fs.npy" # the processed testing set (to calculate the performance)
47
- test_key = ["vocals", "drums", "bass", "other"] # four tracks for musdb, and your named track for other inference
48
- test_type = "mix"
49
- infer_type = "mean"
50
- energy_thres = 0.1
51
- wave_output_path = "/home/Research/ZS_ASP/wavoutput" # output folder
52
- using_wiener = True # use wiener filter or not (default: True)
53
- using_whiting = False # use whiting or not (default: False)
54
-
55
- # weight average
56
- wa_model_folder = "/home/Research/ZS_ASP/version_3/checkpoints/"
57
- wa_model_path = "zs_wa.ckpt"
58
-
59
- # for inference
60
- inference_file = "/home/Research/ZS_ASP/data/pagenini.wav" # an audio file to separate
61
- inference_query = "/home/Research/ZS_ASP/data/query" # a folder containing all samples for obtaining the query
62
- overlap_rate = 0.0 # [0.0, 1.0), 0 to disabled, recommand 0.5 for 50% overlap. Overlap will increase computation time and improve result quality