Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.impute import SimpleImputer
|
4 |
+
from sklearn.preprocessing import LabelEncoder
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.ensemble import RandomForestClassifier
|
8 |
+
from sklearn.metrics import accuracy_score
|
9 |
+
import gradio as gr
|
10 |
+
def rainPrediction(fileCSVName):
|
11 |
+
#Importing necessary libraries
|
12 |
+
#Storing the values from the dataset in a variable
|
13 |
+
if fileCSVName == "weatherAUS.csv":
|
14 |
+
dataset = pd.read_csv("/weatherAUS.csv")
|
15 |
+
#D
|
16 |
+
X = dataset.iloc[:,[1,2,3,4,7,8,9,10,11,12,13,14,15,16,18,19,20,21]].values
|
17 |
+
Y = dataset.iloc[:,-1].values
|
18 |
+
|
19 |
+
#Reshaping Y from a 1-dimensional(a[n]) array into a 2-dimensional(a[n][m]) array
|
20 |
+
Y = Y.reshape(-1,1)
|
21 |
+
|
22 |
+
#Removing NA from the dataset and replacing it with the most frequent value in that column
|
23 |
+
|
24 |
+
imputer = SimpleImputer(missing_values=np.nan,strategy='most_frequent')
|
25 |
+
X = imputer.fit_transform(X)
|
26 |
+
Y = imputer.fit_transform(Y)
|
27 |
+
|
28 |
+
#Encoding non-numerical(i.e: W,WNW) values into numerical values(i.e: 1,2,3,4)
|
29 |
+
|
30 |
+
le1 = LabelEncoder()
|
31 |
+
X[:,0] = le1.fit_transform(X[:,0])
|
32 |
+
le2 = LabelEncoder()
|
33 |
+
X[:,4] = le2.fit_transform(X[:,4])
|
34 |
+
le3 = LabelEncoder()
|
35 |
+
X[:,6] = le3.fit_transform(X[:,6])
|
36 |
+
le4 = LabelEncoder()
|
37 |
+
X[:,7] = le4.fit_transform(X[:,7])
|
38 |
+
le5 = LabelEncoder()
|
39 |
+
X[:,-1] = le5.fit_transform(X[:,-1])
|
40 |
+
le6 = LabelEncoder()
|
41 |
+
Y = le6.fit_transform(Y)
|
42 |
+
|
43 |
+
#Feature scaling to minimize data scattering
|
44 |
+
|
45 |
+
sc = StandardScaler()
|
46 |
+
X = sc.fit_transform(X)
|
47 |
+
|
48 |
+
#Dividing the dataset into 2 parts namely training data and testing data
|
49 |
+
|
50 |
+
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
|
51 |
+
|
52 |
+
#Training our model
|
53 |
+
|
54 |
+
classifier = RandomForestClassifier(n_estimators=100,random_state=0)
|
55 |
+
classifier.fit(X_train,Y_train)
|
56 |
+
classifier.score(X_train,Y_train)
|
57 |
+
Y_test = Y_test.reshape(-1,1)
|
58 |
+
Y_pred = classifier.predict(X_test)
|
59 |
+
Y_pred = le6.inverse_transform(Y_pred)
|
60 |
+
Y_test = le6.inverse_transform(Y_test)
|
61 |
+
Y_test = Y_test.reshape(-1,1)
|
62 |
+
Y_pred = Y_pred.reshape(-1,1)
|
63 |
+
|
64 |
+
#Concatenating our test and prediction result into a dataset
|
65 |
+
df = np.concatenate((Y_test,Y_pred),axis=1)
|
66 |
+
dataframe = pd.DataFrame(df,columns=['Rain Tomorrow','Rain Prediction'])
|
67 |
+
|
68 |
+
#Checking the accuracy
|
69 |
+
|
70 |
+
print(accuracy_score(Y_test,Y_pred))
|
71 |
+
|
72 |
+
#Print .csv file
|
73 |
+
#answer = dataframe.to_csv("predictions.csv")
|
74 |
+
|
75 |
+
# return pd.read_csv("predictions.csv")
|
76 |
+
return dataframe
|
77 |
+
|
78 |
+
app = gr.Interface(rainPrediction, "text", gr.outputs.Dataframe(headers=["Rain Tomorrow", "Rain Prediction"],label="All data"))
|
79 |
+
app.launch(debug=True)
|