Muhammad541's picture
Update app.py
0093774 verified
raw
history blame
18.6 kB
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import os
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from tqdm import tqdm
from tabulate import tabulate
from sklearn.feature_extraction.text import TfidfVectorizer
from multiprocessing import Pool, cpu_count
from flask import Flask, request, jsonify
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Paths for saving artifacts
MODEL_DIR = "./saved_models" # Primary location in /app/saved_models
FALLBACK_MODEL_DIR = "/tmp/saved_models" # Fallback if ./saved_models fails
# Try to use the primary directory, fall back to /tmp if needed
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except PermissionError as e:
logger.warning(f"Permission denied creating directory {MODEL_DIR}: {e}. Falling back to {FALLBACK_MODEL_DIR}")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
except Exception as e:
logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
raise
# Update paths based on the chosen directory
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
# Load Datasets
def load_dataset(file_path, required_columns=[]):
try:
df = pd.read_csv(file_path)
for col in required_columns:
if col not in df.columns:
logger.warning(f"Column '{col}' missing in {file_path}. Using default values.")
df[col] = "" if col != 'level' else 'Intermediate'
return df
except FileNotFoundError:
logger.error(f"Dataset not found at {file_path}. Exiting.")
return None
user_df = load_dataset("Updated_User_Profile_Dataset.csv", ["name", "skills", "level"])
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"])
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"])
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"])
# Simulate courses_df with relevant skills
if courses_df is None or 'skills' not in courses_df.columns or courses_df['skills'].str.strip().eq('').all():
courses_df = pd.DataFrame({
'skills': ['Docker', 'Jenkins', 'Azure', 'Cybersecurity'],
'course_title': ['Docker Mastery', 'Jenkins CI/CD', 'Azure Fundamentals', 'Cybersecurity Basics'],
'Organization': ['Udemy', 'Coursera', 'Microsoft', 'edX'],
'level': ['Intermediate', 'Intermediate', 'Intermediate', 'Advanced'],
'popularity': [0.9, 0.85, 0.95, 0.8],
'completion_rate': [0.7, 0.65, 0.8, 0.6]
})
# Validate questions_df
if questions_df is None or questions_df.empty:
logger.error("questions_df is empty or could not be loaded. Exiting.")
exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
logger.error("questions_df is missing required columns. Exiting.")
exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {questions_df['Skill'].unique().tolist()}")
# Load or Initialize Models
if os.path.exists(UNIVERSAL_MODEL_PATH):
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH)
else:
universal_model = SentenceTransformer("all-MiniLM-L6-v2")
if os.path.exists(DETECTOR_MODEL_PATH):
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
else:
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
# Precompute Resources with Validation
def resources_valid(saved_skills, current_skills):
return set(saved_skills) == set(current_skills)
def initialize_resources(user_skills):
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings
if (os.path.exists(TFIDF_PATH) and os.path.exists(SKILL_TFIDF_PATH) and
os.path.exists(QUESTION_ANSWER_PATH) and os.path.exists(FAISS_INDEX_PATH)):
with open(TFIDF_PATH, 'rb') as f:
tfidf_vectorizer = pickle.load(f)
with open(SKILL_TFIDF_PATH, 'rb') as f:
skill_tfidf = pickle.load(f)
with open(QUESTION_ANSWER_PATH, 'rb') as f:
question_to_answer = pickle.load(f)
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
if not resources_valid(skill_tfidf.keys(), [s.lower() for s in user_skills]):
logger.info("⚠ Saved skill TF-IDF mismatch detected. Recomputing resources.")
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
else:
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
with open(TFIDF_PATH, 'wb') as f:
pickle.dump(tfidf_vectorizer, f)
with open(SKILL_TFIDF_PATH, 'wb') as f:
pickle.dump(skill_tfidf, f)
with open(QUESTION_ANSWER_PATH, 'wb') as f:
pickle.dump(question_to_answer, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
detector_model.save_pretrained(DETECTOR_MODEL_PATH)
detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
logger.info(f"Models and resources saved to {chosen_model_dir}")
# Evaluate Responses
def evaluate_response(args):
skill, user_answer, question = args
if not user_answer:
return skill, 0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai_generated = probs[1] > 0.5
user_embedding = universal_model.encode(user_answer, convert_to_tensor=True)
expected_answer = question_to_answer.get(question, "")
expected_embedding = universal_model.encode(expected_answer, convert_to_tensor=True)
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
skill_lower = skill.lower()
skill_vec = skill_tfidf.get(skill_lower, tfidf_vectorizer.transform([skill_lower]).toarray()[0])
skill_relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
penalty = min(1.0, max(0.5, skill_relevance))
score *= penalty
return skill, round(max(0, score), 2), is_ai_generated
# Recommend Courses
def recommend_courses(skills_to_improve, user_level, upgrade=False):
if not skills_to_improve:
return []
skill_embeddings = universal_model.encode(skills_to_improve, convert_to_tensor=True)
course_embeddings = universal_model.encode(courses_df['skills'].fillna(""), convert_to_tensor=True)
bert_similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).numpy()
collab_scores = []
for skill in skills_to_improve:
overlap = sum(1 for user_skills_str in user_df['skills'] if pd.notna(user_skills_str) and skill.lower() in user_skills_str.lower())
collab_scores.append(overlap / len(user_df))
collab_similarities = np.array([collab_scores]).repeat(len(courses_df), axis=0).T
popularity = courses_df['popularity'].fillna(0.5).to_numpy()
completion = courses_df['completion_rate'].fillna(0.5).to_numpy()
total_scores = (0.6 * bert_similarities + 0.2 * collab_similarities + 0.1 * popularity + 0.1 * completion)
recommended_courses = []
target_level = 'Advanced' if upgrade else user_level
for i, skill in enumerate(skills_to_improve):
top_indices = total_scores[i].argsort()[-5:][::-1]
candidates = courses_df.iloc[top_indices]
candidates = candidates[candidates['skills'].str.lower() == skill.lower()]
if candidates.empty:
candidates = courses_df.iloc[top_indices]
candidates.loc[:, "level_match"] = candidates['level'].apply(lambda x: 1 if x == target_level else 0.8 if abs({'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[x] - {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[user_level]) <= 1 else 0.5)
level_filtered = candidates.sort_values(by="level_match", ascending=False)
recommended_courses.extend(level_filtered[['course_title', 'Organization']].values.tolist()[:3])
return list(dict.fromkeys(tuple(course) for course in recommended_courses if course[0].strip()))
# Recommend Jobs
def recommend_jobs(user_skills, user_level):
job_field = 'required_skills' if 'required_skills' in jobs_df.columns and not jobs_df['required_skills'].str.strip().eq('').all() else 'job_description'
job_embeddings = universal_model.encode(jobs_df[job_field].fillna(""), convert_to_tensor=True)
user_embedding = universal_model.encode(" ".join(user_skills), convert_to_tensor=True)
skill_similarities = util.pytorch_cos_sim(user_embedding, job_embeddings).numpy()[0]
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
user_level_num = level_map[user_level]
exp_match = jobs_df['level'].fillna('Intermediate').apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num) / 2) if 'level' in jobs_df.columns else np.ones(len(jobs_df)) * 0.5
location_pref = jobs_df['location'].apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7).to_numpy()
industry_embeddings = universal_model.encode(jobs_df['job_title'].fillna(""), convert_to_tensor=True)
industry_similarities = util.pytorch_cos_sim(user_embedding, industry_embeddings).numpy()[0]
total_job_scores = (0.5 * skill_similarities + 0.2 * exp_match + 0.1 * location_pref + 0.2 * industry_similarities)
top_job_indices = total_job_scores.argsort()[-5:][::-1]
return [(jobs_df.iloc[idx]['job_title'], jobs_df.iloc[idx]['company_name'], jobs_df.iloc[idx]['location']) for idx in top_job_indices]
# Main API Endpoint
app = Flask(__name__)
@app.route('/assess', methods=['POST'])
def assess_skills():
data = request.get_json()
logger.info(f"Received request: {data}")
if not data or 'user_index' not in data or 'answers' not in data:
logger.error("Invalid input: Missing 'user_index' or 'answers' in JSON body.")
return jsonify({"error": "Invalid input. Provide 'user_index' and 'answers' in JSON body."}), 400
# Validate answers length immediately
answers = data['answers']
if not isinstance(answers, list):
logger.error(f"Answers must be a list, got: {type(answers)}")
return jsonify({"error": "Answers must be a list."}), 400
if len(answers) != 4:
logger.error(f"Expected exactly 4 answers, but received {len(answers)}.")
return jsonify({"error": f"Please provide exactly 4 answers. Received {len(answers)}."}), 400
user_index = int(data['user_index'])
if user_index < 0 or user_index >= len(user_df):
logger.error(f"Invalid user index: {user_index}. Must be between 0 and {len(user_df) - 1}.")
return jsonify({"error": "Invalid user index."}), 400
user_text = user_df.loc[user_index, 'skills']
user_skills = [skill.strip() for skill in user_text.split(",") if skill.strip()] if isinstance(user_text, str) else ["Python", "SQL"]
user_name = user_df.loc[user_index, 'name']
user_level = user_df.loc[user_index, 'level'] if 'level' in user_df.columns and pd.notna(user_df.loc[user_index, 'level']) else 'Intermediate'
logger.info(f"User: {user_name}, Skills: {user_skills}, Level: {user_level}")
initialize_resources(user_skills)
# Normalize skills for case-insensitive matching
filtered_questions = questions_df[questions_df['Skill'].str.lower().isin([skill.lower() for skill in user_skills])]
logger.info(f"Filtered questions shape: {filtered_questions.shape}")
logger.info(f"Available skills in questions_df: {filtered_questions['Skill'].unique().tolist()}")
if filtered_questions.empty:
logger.error("No matching questions found for the user's skills.")
return jsonify({"error": "No matching questions found!"}), 500
user_questions = []
for skill in user_skills:
skill_questions = filtered_questions[filtered_questions['Skill'].str.lower() == skill.lower()]
logger.info(f"Questions for skill '{skill}': {len(skill_questions)}")
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0])
else:
logger.warning(f"No questions found for skill '{skill}'. Using a default question.")
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
user_questions = pd.DataFrame(user_questions)
logger.info(f"Selected questions: {user_questions[['Skill', 'Question']].to_dict(orient='records')}")
if len(user_questions) != 4:
logger.error(f"Not enough questions for all skills. Expected 4, got {len(user_questions)}.")
return jsonify({"error": f"Not enough questions for all skills! Expected 4, got {len(user_questions)}."}), 500
user_responses = []
for idx, row in user_questions.iterrows():
answer = answers[idx]
logger.debug(f"Pairing question for skill '{row['Skill']}' with answer at index {idx}")
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, row['Question']))
else:
user_responses.append((row['Skill'], answer, row['Question']))
try:
with Pool(cpu_count()) as pool:
eval_args = [(skill, user_code, question) for skill, user_code, question in user_responses if user_code]
logger.info(f"Evaluating {len(eval_args)} answers using multiprocessing pool.")
results = pool.map(evaluate_response, eval_args)
except Exception as e:
logger.error(f"Error in evaluate_response: {str(e)}", exc_info=True)
return jsonify({"error": "Failed to evaluate answers due to an internal error."}), 500
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, question in user_responses if user_code is None]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
scores_list.append(score)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
assessment_results = [
(skill, f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}", f"{score:.2f}%", "AI-Generated" if ai_flags[skill] else "Human-Written")
for skill, score in user_scores.items()
]
assessment_output = tabulate(assessment_results, headers=["Skill", "Progress", "Score", "Origin"], tablefmt="grid")
if skipped_questions:
assessment_output += f"\nSkipped Questions: {skipped_questions}"
assessment_output += f"\nMean Score: {mean_score:.2f}, Dynamic Threshold: {dynamic_threshold:.2f}"
assessment_output += f"\nWeak Skills: {weak_skills if weak_skills else 'None'}"
skills_to_recommend = weak_skills if weak_skills else user_skills
upgrade_flag = not weak_skills
recommended_courses = recommend_courses(skills_to_recommend, user_level, upgrade=upgrade_flag)
courses_output = tabulate(recommended_courses, headers=["Course", "Organization"], tablefmt="grid") if recommended_courses else "None"
recommended_jobs = recommend_jobs(user_skills, user_level)
jobs_output = tabulate(recommended_jobs, headers=["Job Title", "Company", "Location"], tablefmt="grid")
response = {
"user_info": f"User: {user_name}\nSkills: {user_skills}\nLevel: {user_level}",
"assessment_results": assessment_output,
"recommended_courses": courses_output,
"recommended_jobs": jobs_output
}
logger.info(f"Response: {response}")
return jsonify(response)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)