Muhammad541's picture
Update app.py
f3434ed verified
raw
history blame
19.3 kB
import os
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from tqdm import tqdm
from tabulate import tabulate
from sklearn.feature_extraction.text import TfidfVectorizer
from multiprocessing import Pool, cpu_count
from flask import Flask, request, jsonify
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Disable tokenizers parallelism to avoid fork-related deadlocks
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Paths for saving artifacts
MODEL_DIR = "./saved_models" # Primary location in /app/saved_models
FALLBACK_MODEL_DIR = "/tmp/saved_models" # Fallback if ./saved_models fails
# Try to use the primary directory, fall back to /tmp if needed
try:
os.makedirs(MODEL_DIR, exist_ok=True)
logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
chosen_model_dir = MODEL_DIR
except PermissionError as e:
logger.warning(f"Permission denied creating directory {MODEL_DIR}: {e}. Falling back to {FALLBACK_MODEL_DIR}")
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
chosen_model_dir = FALLBACK_MODEL_DIR
except Exception as e:
logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
raise
# Update paths based on the chosen directory
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
# Load Datasets
def load_dataset(file_path, required_columns=[]):
try:
df = pd.read_csv(file_path)
for col in required_columns:
if col not in df.columns:
logger.warning(f"Column '{col}' missing in {file_path}. Using default values.")
df[col] = "" if col != 'level' else 'Intermediate'
return df
except FileNotFoundError:
logger.error(f"Dataset not found at {file_path}. Exiting.")
return None
user_df = load_dataset("Updated_User_Profile_Dataset.csv", ["name", "skills", "level"])
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"])
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"])
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"])
# Simulate courses_df with relevant skills
if courses_df is None or 'skills' not in courses_df.columns or courses_df['skills'].str.strip().eq('').all():
courses_df = pd.DataFrame({
'skills': ['Docker', 'Jenkins', 'Azure', 'Cybersecurity'],
'course_title': ['Docker Mastery', 'Jenkins CI/CD', 'Azure Fundamentals', 'Cybersecurity Basics'],
'Organization': ['Udemy', 'Coursera', 'Microsoft', 'edX'],
'level': ['Intermediate', 'Intermediate', 'Intermediate', 'Advanced'],
'popularity': [0.9, 0.85, 0.95, 0.8],
'completion_rate': [0.7, 0.65, 0.8, 0.6]
})
# Validate questions_df
if questions_df is None or questions_df.empty:
logger.error("questions_df is empty or could not be loaded. Exiting.")
exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
logger.error("questions_df is missing required columns. Exiting.")
exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {questions_df['Skill'].unique().tolist()}")
# Load or Initialize Models
if os.path.exists(UNIVERSAL_MODEL_PATH):
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH)
else:
universal_model = SentenceTransformer("all-MiniLM-L6-v2")
if os.path.exists(DETECTOR_MODEL_PATH):
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
else:
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
# Precompute Resources with Validation
def resources_valid(saved_skills, current_skills):
return set(saved_skills) == set(current_skills)
def initialize_resources(user_skills):
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings
if (os.path.exists(TFIDF_PATH) and os.path.exists(SKILL_TFIDF_PATH) and
os.path.exists(QUESTION_ANSWER_PATH) and os.path.exists(FAISS_INDEX_PATH)):
with open(TFIDF_PATH, 'rb') as f:
tfidf_vectorizer = pickle.load(f)
with open(SKILL_TFIDF_PATH, 'rb') as f:
skill_tfidf = pickle.load(f)
with open(QUESTION_ANSWER_PATH, 'rb') as f:
question_to_answer = pickle.load(f)
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
if not resources_valid(skill_tfidf.keys(), [s.lower() for s in user_skills]):
logger.info("⚠ Saved skill TF-IDF mismatch detected. Recomputing resources.")
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
else:
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
tfidf_vectorizer.fit(all_texts)
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
faiss_index.add(answer_embeddings)
with open(TFIDF_PATH, 'wb') as f:
pickle.dump(tfidf_vectorizer, f)
with open(SKILL_TFIDF_PATH, 'wb') as f:
pickle.dump(skill_tfidf, f)
with open(QUESTION_ANSWER_PATH, 'wb') as f:
pickle.dump(question_to_answer, f)
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
detector_model.save_pretrained(DETECTOR_MODEL_PATH)
detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
logger.info(f"Models and resources saved to {chosen_model_dir}")
# Evaluate Responses
def evaluate_response(args):
skill, user_answer, question = args
if not user_answer:
return skill, 0, False
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
logits = detector_model(**inputs).logits
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
is_ai_generated = probs[1] > 0.5
user_embedding = universal_model.encode(user_answer, convert_to_tensor=True)
expected_answer = question_to_answer.get(question, "")
expected_embedding = universal_model.encode(expected_answer, convert_to_tensor=True)
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
skill_lower = skill.lower()
skill_vec = skill_tfidf.get(skill_lower, tfidf_vectorizer.transform([skill_lower]).toarray()[0])
skill_relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
penalty = min(1.0, max(0.5, skill_relevance))
score *= penalty
logger.debug(f"Evaluated {skill}: score={score:.2f}, is_ai={is_ai_generated}")
return skill, round(max(0, score), 2), is_ai_generated
# Recommend Courses
def recommend_courses(skills_to_improve, user_level, upgrade=False):
if not skills_to_improve:
return []
skill_embeddings = universal_model.encode(skills_to_improve, convert_to_tensor=True)
course_embeddings = universal_model.encode(courses_df['skills'].fillna(""), convert_to_tensor=True)
bert_similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).numpy()
collab_scores = []
for skill in skills_to_improve:
overlap = sum(1 for user_skills_str in user_df['skills'] if pd.notna(user_skills_str) and skill.lower() in user_skills_str.lower())
collab_scores.append(overlap / len(user_df))
collab_similarities = np.array([collab_scores]).repeat(len(courses_df), axis=0).T
popularity = courses_df['popularity'].fillna(0.5).to_numpy()
completion = courses_df['completion_rate'].fillna(0.5).to_numpy()
total_scores = (0.6 * bert_similarities + 0.2 * collab_similarities + 0.1 * popularity + 0.1 * completion)
recommended_courses = []
target_level = 'Advanced' if upgrade else user_level
for i, skill in enumerate(skills_to_improve):
top_indices = total_scores[i].argsort()[-5:][::-1]
candidates = courses_df.iloc[top_indices]
candidates = candidates[candidates['skills'].str.lower() == skill.lower()]
if candidates.empty:
candidates = courses_df.iloc[top_indices]
candidates.loc[:, "level_match"] = candidates['level'].apply(lambda x: 1 if x == target_level else 0.8 if abs({'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[x] - {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[user_level]) <= 1 else 0.5)
level_filtered = candidates.sort_values(by="level_match", ascending=False)
recommended_courses.extend(level_filtered[['course_title', 'Organization']].values.tolist()[:3])
return list(dict.fromkeys(tuple(course) for course in recommended_courses if course[0].strip()))
# Recommend Jobs
def recommend_jobs(user_skills, user_level):
job_field = 'required_skills' if 'required_skills' in jobs_df.columns and not jobs_df['required_skills'].str.strip().eq('').all() else 'job_description'
job_embeddings = universal_model.encode(jobs_df[job_field].fillna(""), convert_to_tensor=True)
user_embedding = universal_model.encode(" ".join(user_skills), convert_to_tensor=True)
skill_similarities = util.pytorch_cos_sim(user_embedding, job_embeddings).numpy()[0]
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
user_level_num = level_map[user_level]
exp_match = jobs_df['level'].fillna('Intermediate').apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num) / 2) if 'level' in jobs_df.columns else np.ones(len(jobs_df)) * 0.5
location_pref = jobs_df['location'].apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7).to_numpy()
industry_embeddings = universal_model.encode(jobs_df['job_title'].fillna(""), convert_to_tensor=True)
industry_similarities = util.pytorch_cos_sim(user_embedding, industry_embeddings).numpy()[0]
total_job_scores = (0.5 * skill_similarities + 0.2 * exp_match + 0.1 * location_pref + 0.2 * industry_similarities)
top_job_indices = total_job_scores.argsort()[-5:][::-1]
return [(jobs_df.iloc[idx]['job_title'], jobs_df.iloc[idx]['company_name'], jobs_df.iloc[idx]['location']) for idx in top_job_indices]
# Main API Endpoint
app = Flask(__name__)
@app.route('/assess', methods=['POST'])
def assess_skills():
data = request.get_json()
logger.info(f"Received request: {data}")
if not data or 'user_index' not in data or 'answers' not in data:
logger.error("Invalid input: Missing 'user_index' or 'answers' in JSON body.")
return jsonify({"error": "Invalid input. Provide 'user_index' and 'answers' in JSON body."}), 400
# Validate answers length immediately
answers = data['answers']
if not isinstance(answers, list):
logger.error(f"Answers must be a list, got: {type(answers)}")
return jsonify({"error": "Answers must be a list."}), 400
if len(answers) != 4:
logger.error(f"Expected exactly 4 answers, but received {len(answers)}.")
return jsonify({"error": f"Please provide exactly 4 answers. Received {len(answers)}."}), 400
user_index = int(data['user_index'])
if user_index < 0 or user_index >= len(user_df):
logger.error(f"Invalid user index: {user_index}. Must be between 0 and {len(user_df) - 1}.")
return jsonify({"error": "Invalid user index."}), 400
user_text = user_df.loc[user_index, 'skills']
user_skills = [skill.strip() for skill in user_text.split(",") if skill.strip()] if isinstance(user_text, str) else ["Python", "SQL"]
user_name = user_df.loc[user_index, 'name']
user_level = user_df.loc[user_index, 'level'] if 'level' in user_df.columns and pd.notna(user_df.loc[user_index, 'level']) else 'Intermediate'
logger.info(f"User: {user_name}, Skills: {user_skills}, Level: {user_level}")
initialize_resources(user_skills)
# Normalize skills for case-insensitive matching
filtered_questions = questions_df[questions_df['Skill'].str.lower().isin([skill.lower() for skill in user_skills])]
logger.info(f"Filtered questions shape: {filtered_questions.shape}")
logger.info(f"Available skills in questions_df: {filtered_questions['Skill'].unique().tolist()}")
if filtered_questions.empty:
logger.error("No matching questions found for the user's skills.")
return jsonify({"error": "No matching questions found!"}), 500
user_questions = []
for skill in user_skills:
skill_questions = filtered_questions[filtered_questions['Skill'].str.lower() == skill.lower()]
logger.info(f"Questions for skill '{skill}': {len(skill_questions)}")
if not skill_questions.empty:
user_questions.append(skill_questions.sample(1).iloc[0])
else:
logger.warning(f"No questions found for skill '{skill}'. Using a default question.")
user_questions.append({
'Skill': skill,
'Question': f"What are the best practices for using {skill} in a production environment?",
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
})
user_questions = pd.DataFrame(user_questions).reset_index(drop=True) # Reset index to ensure sequential indices
logger.info(f"Selected questions: {user_questions[['Skill', 'Question']].to_dict(orient='records')}")
logger.info(f"Number of selected questions: {len(user_questions)}")
if len(user_questions) != 4:
logger.error(f"Not enough questions for all skills. Expected 4, got {len(user_questions)}.")
return jsonify({"error": f"Not enough questions for all skills! Expected 4, got {len(user_questions)}."}), 500
user_responses = []
for idx, row in user_questions.iterrows():
logger.debug(f"Pairing question for skill '{row['Skill']}' with answer at index {idx}")
if idx >= len(answers):
logger.error(f"Index out of range: idx={idx}, len(answers)={len(answers)}")
return jsonify({"error": f"Internal error: Index {idx} out of range for answers list of length {len(answers)}."}), 500
answer = answers[idx]
if not answer or answer.lower() == 'skip':
user_responses.append((row['Skill'], None, row['Question']))
else:
user_responses.append((row['Skill'], answer, row['Question']))
try:
with Pool(cpu_count()) as pool:
eval_args = [(skill, user_code, question) for skill, user_code, question in user_responses if user_code]
logger.info(f"Evaluating {len(eval_args)} answers using multiprocessing pool.")
results = pool.map(evaluate_response, eval_args)
logger.info(f"Evaluation results: {results}")
except Exception as e:
logger.error(f"Error in evaluate_response: {str(e)}", exc_info=True)
return jsonify({"error": "Failed to evaluate answers due to an internal error."}), 500
user_scores = {}
ai_flags = {}
scores_list = []
skipped_questions = [f"{skill} ({question})" for skill, user_code, question in user_responses if user_code is None]
for skill, score, is_ai in results:
if skill in user_scores:
user_scores[skill] = max(user_scores[skill], score)
ai_flags[skill] = ai_flags[skill] or is_ai
else:
user_scores[skill] = score
ai_flags[skill] = is_ai
scores_list.append(score)
mean_score = np.mean(scores_list) if scores_list else 50
dynamic_threshold = max(40, mean_score)
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
assessment_results = [
(skill, f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}", f"{score:.2f}%", "AI-Generated" if ai_flags[skill] else "Human-Written")
for skill, score in user_scores.items()
]
assessment_output = tabulate(assessment_results, headers=["Skill", "Progress", "Score", "Origin"], tablefmt="grid")
if skipped_questions:
assessment_output += f"\nSkipped Questions: {skipped_questions}"
assessment_output += f"\nMean Score: {mean_score:.2f}, Dynamic Threshold: {dynamic_threshold:.2f}"
assessment_output += f"\nWeak Skills: {weak_skills if weak_skills else 'None'}"
skills_to_recommend = weak_skills if weak_skills else user_skills
upgrade_flag = not weak_skills
recommended_courses = recommend_courses(skills_to_recommend, user_level, upgrade=upgrade_flag)
courses_output = tabulate(recommended_courses, headers=["Course", "Organization"], tablefmt="grid") if recommended_courses else "None"
recommended_jobs = recommend_jobs(user_skills, user_level)
jobs_output = tabulate(recommended_jobs, headers=["Job Title", "Company", "Location"], tablefmt="grid")
response = {
"user_info": f"User: {user_name}\nSkills: {user_skills}\nLevel: {user_level}",
"assessment_results": assessment_output,
"recommended_courses": courses_output,
"recommended_jobs": jobs_output
}
logger.info(f"Response: {response}")
return jsonify(response)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)