Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,25 +19,30 @@ logging.basicConfig(level=logging.INFO)
|
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
# Paths for saving artifacts
|
22 |
-
MODEL_DIR = "
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
SKILL_TFIDF_PATH = os.path.join(MODEL_DIR, "skill_tfidf.pkl")
|
27 |
-
QUESTION_ANSWER_PATH = os.path.join(MODEL_DIR, "question_to_answer.pkl")
|
28 |
-
FAISS_INDEX_PATH = os.path.join(MODEL_DIR, "faiss_index.index")
|
29 |
-
|
30 |
-
# Ensure the directory exists with error handling
|
31 |
try:
|
32 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
33 |
logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
|
|
|
34 |
except PermissionError as e:
|
35 |
-
logger.
|
36 |
-
|
|
|
37 |
except Exception as e:
|
38 |
logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
|
39 |
raise
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Load Datasets
|
42 |
def load_dataset(file_path, required_columns=[]):
|
43 |
try:
|
@@ -127,7 +132,7 @@ def initialize_resources(user_skills):
|
|
127 |
universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
|
128 |
detector_model.save_pretrained(DETECTOR_MODEL_PATH)
|
129 |
detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
|
130 |
-
logger.info(f"Models and resources saved to {
|
131 |
|
132 |
# Evaluate Responses
|
133 |
def evaluate_response(args):
|
|
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
# Paths for saving artifacts
|
22 |
+
MODEL_DIR = "./saved_models" # Primary location in /app/saved_models
|
23 |
+
FALLBACK_MODEL_DIR = "/tmp/saved_models" # Fallback if ./saved_models fails
|
24 |
+
|
25 |
+
# Try to use the primary directory, fall back to /tmp if needed
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
28 |
logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
|
29 |
+
chosen_model_dir = MODEL_DIR
|
30 |
except PermissionError as e:
|
31 |
+
logger.warning(f"Permission denied creating directory {MODEL_DIR}: {e}. Falling back to {FALLBACK_MODEL_DIR}")
|
32 |
+
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
|
33 |
+
chosen_model_dir = FALLBACK_MODEL_DIR
|
34 |
except Exception as e:
|
35 |
logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
|
36 |
raise
|
37 |
|
38 |
+
# Update paths based on the chosen directory
|
39 |
+
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
|
40 |
+
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
|
41 |
+
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
|
42 |
+
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
|
43 |
+
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
|
44 |
+
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
|
45 |
+
|
46 |
# Load Datasets
|
47 |
def load_dataset(file_path, required_columns=[]):
|
48 |
try:
|
|
|
132 |
universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
|
133 |
detector_model.save_pretrained(DETECTOR_MODEL_PATH)
|
134 |
detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
|
135 |
+
logger.info(f"Models and resources saved to {chosen_model_dir}")
|
136 |
|
137 |
# Evaluate Responses
|
138 |
def evaluate_response(args):
|