Muhammad541 commited on
Commit
baacef2
·
verified ·
1 Parent(s): d04c875

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -3
app.py CHANGED
@@ -12,6 +12,11 @@ from tabulate import tabulate
12
  from sklearn.feature_extraction.text import TfidfVectorizer
13
  from multiprocessing import Pool, cpu_count
14
  from flask import Flask, request, jsonify
 
 
 
 
 
15
 
16
  # Paths for saving artifacts
17
  MODEL_DIR = "./saved_models"
@@ -22,7 +27,16 @@ SKILL_TFIDF_PATH = os.path.join(MODEL_DIR, "skill_tfidf.pkl")
22
  QUESTION_ANSWER_PATH = os.path.join(MODEL_DIR, "question_to_answer.pkl")
23
  FAISS_INDEX_PATH = os.path.join(MODEL_DIR, "faiss_index.index")
24
 
25
- os.makedirs(MODEL_DIR, exist_ok=True)
 
 
 
 
 
 
 
 
 
26
 
27
  # Load Datasets
28
  def load_dataset(file_path, required_columns=[]):
@@ -84,7 +98,7 @@ def initialize_resources(user_skills):
84
  answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
85
 
86
  if not resources_valid(skill_tfidf.keys(), [s.lower() for s in user_skills]):
87
- print("⚠ Saved skill TF-IDF mismatch detected. Recomputing resources.")
88
  tfidf_vectorizer = TfidfVectorizer(stop_words='english')
89
  all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
90
  tfidf_vectorizer.fit(all_texts)
@@ -113,7 +127,7 @@ def initialize_resources(user_skills):
113
  universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
114
  detector_model.save_pretrained(DETECTOR_MODEL_PATH)
115
  detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
116
- print(f"Models and resources saved to {MODEL_DIR}")
117
 
118
  # Evaluate Responses
119
  def evaluate_response(args):
 
12
  from sklearn.feature_extraction.text import TfidfVectorizer
13
  from multiprocessing import Pool, cpu_count
14
  from flask import Flask, request, jsonify
15
+ import logging
16
+
17
+ # Set up logging
18
+ logging.basicConfig(level=logging.INFO)
19
+ logger = logging.getLogger(__name__)
20
 
21
  # Paths for saving artifacts
22
  MODEL_DIR = "./saved_models"
 
27
  QUESTION_ANSWER_PATH = os.path.join(MODEL_DIR, "question_to_answer.pkl")
28
  FAISS_INDEX_PATH = os.path.join(MODEL_DIR, "faiss_index.index")
29
 
30
+ # Ensure the directory exists with error handling
31
+ try:
32
+ os.makedirs(MODEL_DIR, exist_ok=True)
33
+ logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
34
+ except PermissionError as e:
35
+ logger.error(f"Permission denied creating directory {MODEL_DIR}: {e}")
36
+ raise
37
+ except Exception as e:
38
+ logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
39
+ raise
40
 
41
  # Load Datasets
42
  def load_dataset(file_path, required_columns=[]):
 
98
  answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
99
 
100
  if not resources_valid(skill_tfidf.keys(), [s.lower() for s in user_skills]):
101
+ logger.info("⚠ Saved skill TF-IDF mismatch detected. Recomputing resources.")
102
  tfidf_vectorizer = TfidfVectorizer(stop_words='english')
103
  all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
104
  tfidf_vectorizer.fit(all_texts)
 
127
  universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
128
  detector_model.save_pretrained(DETECTOR_MODEL_PATH)
129
  detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
130
+ logger.info(f"Models and resources saved to {MODEL_DIR}")
131
 
132
  # Evaluate Responses
133
  def evaluate_response(args):