Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,21 +22,18 @@ logger = logging.getLogger(__name__)
|
|
22 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
|
24 |
# Paths for saving artifacts
|
25 |
-
MODEL_DIR = "./saved_models"
|
26 |
-
FALLBACK_MODEL_DIR = "/tmp/saved_models"
|
27 |
|
28 |
-
#
|
29 |
try:
|
30 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
31 |
-
logger.info(f"
|
32 |
chosen_model_dir = MODEL_DIR
|
33 |
-
except
|
34 |
-
logger.warning(f"
|
35 |
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
|
36 |
chosen_model_dir = FALLBACK_MODEL_DIR
|
37 |
-
except Exception as e:
|
38 |
-
logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
|
39 |
-
raise
|
40 |
|
41 |
# Update paths based on the chosen directory
|
42 |
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
|
@@ -46,316 +43,245 @@ SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
|
|
46 |
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
|
47 |
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
|
48 |
|
49 |
-
#
|
50 |
def load_dataset(file_path, required_columns=[]):
|
51 |
try:
|
52 |
df = pd.read_csv(file_path)
|
53 |
for col in required_columns:
|
54 |
if col not in df.columns:
|
55 |
logger.warning(f"Column '{col}' missing in {file_path}. Using default values.")
|
56 |
-
df[col] = ""
|
57 |
return df
|
58 |
-
except
|
59 |
-
logger.error(f"
|
60 |
return None
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
|
95 |
-
else:
|
96 |
-
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
|
97 |
-
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
|
98 |
-
|
99 |
-
# Precompute Resources with Validation
|
100 |
-
def resources_valid(saved_skills, current_skills):
|
101 |
-
return set(saved_skills) == set(current_skills)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
def initialize_resources(user_skills):
|
104 |
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
faiss_index.add(answer_embeddings)
|
126 |
else:
|
|
|
|
|
|
|
|
|
127 |
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
128 |
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
|
129 |
tfidf_vectorizer.fit(all_texts)
|
130 |
-
|
|
|
131 |
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
|
132 |
-
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True
|
|
|
133 |
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
|
134 |
faiss_index.add(answer_embeddings)
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
with open(SKILL_TFIDF_PATH, 'wb') as f:
|
139 |
-
|
140 |
-
with open(QUESTION_ANSWER_PATH, 'wb') as f:
|
141 |
-
pickle.dump(question_to_answer, f)
|
142 |
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
|
143 |
-
universal_model.
|
144 |
-
|
145 |
-
detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
|
146 |
-
logger.info(f"Models and resources saved to {chosen_model_dir}")
|
147 |
|
148 |
-
#
|
149 |
def evaluate_response(args):
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
176 |
def recommend_courses(skills_to_improve, user_level, upgrade=False):
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
return []
|
179 |
-
|
180 |
-
|
181 |
-
course_embeddings = universal_model.encode(courses_df['skills'].fillna(""), convert_to_tensor=True)
|
182 |
-
bert_similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).numpy()
|
183 |
-
|
184 |
-
collab_scores = []
|
185 |
-
for skill in skills_to_improve:
|
186 |
-
overlap = 1 # Simplified since user_df is removed
|
187 |
-
collab_scores.append(overlap)
|
188 |
-
collab_similarities = np.array([collab_scores]).repeat(len(courses_df), axis=0).T
|
189 |
-
|
190 |
-
popularity = courses_df['popularity'].fillna(0.5).to_numpy()
|
191 |
-
completion = courses_df['completion_rate'].fillna(0.5).to_numpy()
|
192 |
-
total_scores = (0.6 * bert_similarities + 0.2 * collab_similarities + 0.1 * popularity + 0.1 * completion)
|
193 |
-
|
194 |
-
recommended_courses = []
|
195 |
-
target_level = 'Advanced' if upgrade else user_level
|
196 |
-
for i, skill in enumerate(skills_to_improve):
|
197 |
-
top_indices = total_scores[i].argsort()[-5:][::-1]
|
198 |
-
candidates = courses_df.iloc[top_indices]
|
199 |
-
candidates = candidates[candidates['skills'].str.lower() == skill.lower()]
|
200 |
-
if candidates.empty:
|
201 |
-
candidates = courses_df.iloc[top_indices]
|
202 |
-
candidates.loc[:, "level_match"] = candidates['level'].apply(lambda x: 1 if x == target_level else 0.8 if abs({'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[x] - {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[user_level]) <= 1 else 0.5)
|
203 |
-
level_filtered = candidates.sort_values(by="level_match", ascending=False)
|
204 |
-
recommended_courses.extend(level_filtered[['course_title', 'Organization']].values.tolist()[:3])
|
205 |
-
return list(dict.fromkeys(tuple(course) for course in recommended_courses if course[0].strip()))
|
206 |
-
|
207 |
-
# Recommend Jobs
|
208 |
def recommend_jobs(user_skills, user_level):
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
app = Flask(__name__)
|
227 |
|
|
|
|
|
|
|
|
|
228 |
@app.route('/assess', methods=['POST'])
|
229 |
def assess_skills():
|
230 |
-
data = request.get_json()
|
231 |
-
logger.info(f"Received request: {data}")
|
232 |
-
|
233 |
-
# Validate required fields
|
234 |
-
if not data or 'user_name' not in data or 'skills' not in data or 'answers' not in data:
|
235 |
-
logger.error("Invalid input: Missing 'user_name', 'skills', or 'answers' in JSON body.")
|
236 |
-
return jsonify({"error": "Invalid input. Provide 'user_name', 'skills', and 'answers' in JSON body."}), 400
|
237 |
-
|
238 |
-
user_name = data['user_name']
|
239 |
-
user_skills = data['skills']
|
240 |
-
answers = data['answers']
|
241 |
-
|
242 |
-
# Validate inputs
|
243 |
-
if not isinstance(user_name, str) or not user_name.strip():
|
244 |
-
logger.error("Invalid user_name: Must be a non-empty string.")
|
245 |
-
return jsonify({"error": "Invalid user_name. Must be a non-empty string."}), 400
|
246 |
-
|
247 |
-
if not isinstance(user_skills, list) or not user_skills or not all(isinstance(skill, str) and skill.strip() for skill in user_skills):
|
248 |
-
logger.error("Invalid skills: Must be a non-empty list of non-empty strings.")
|
249 |
-
return jsonify({"error": "Invalid skills. Must be a non-empty list of non-empty strings."}), 400
|
250 |
-
|
251 |
-
if not isinstance(answers, list):
|
252 |
-
logger.error(f"Answers must be a list, got: {type(answers)}")
|
253 |
-
return jsonify({"error": "Answers must be a list."}), 400
|
254 |
-
|
255 |
-
# Ensure the number of answers matches the number of skills
|
256 |
-
if len(answers) != len(user_skills):
|
257 |
-
logger.error(f"Number of answers ({len(answers)}) does not match number of skills ({len(user_skills)}).")
|
258 |
-
return jsonify({"error": f"Number of answers ({len(answers)}) must match the number of skills ({len(user_skills)})."}), 400
|
259 |
-
|
260 |
-
user_level = 'Intermediate' # Default level since user_df is removed
|
261 |
-
logger.info(f"User: {user_name}, Skills: {user_skills}, Level: {user_level}")
|
262 |
-
|
263 |
-
initialize_resources(user_skills)
|
264 |
-
|
265 |
-
# Normalize skills for case-insensitive matching
|
266 |
-
filtered_questions = questions_df[questions_df['Skill'].str.lower().isin([skill.lower() for skill in user_skills])]
|
267 |
-
logger.info(f"Filtered questions shape: {filtered_questions.shape}")
|
268 |
-
logger.info(f"Available skills in questions_df: {filtered_questions['Skill'].unique().tolist()}")
|
269 |
-
if filtered_questions.empty:
|
270 |
-
logger.error("No matching questions found for the user's skills.")
|
271 |
-
return jsonify({"error": "No matching questions found!"}), 500
|
272 |
-
|
273 |
-
user_questions = []
|
274 |
-
for skill in user_skills:
|
275 |
-
skill_questions = filtered_questions[filtered_questions['Skill'].str.lower() == skill.lower()]
|
276 |
-
logger.info(f"Questions for skill '{skill}': {len(skill_questions)}")
|
277 |
-
if not skill_questions.empty:
|
278 |
-
user_questions.append(skill_questions.sample(1).iloc[0])
|
279 |
-
else:
|
280 |
-
logger.warning(f"No questions found for skill '{skill}'. Using a default question.")
|
281 |
-
user_questions.append({
|
282 |
-
'Skill': skill,
|
283 |
-
'Question': f"What are the best practices for using {skill} in a production environment?",
|
284 |
-
'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
|
285 |
-
})
|
286 |
-
user_questions = pd.DataFrame(user_questions).reset_index(drop=True) # Reset index to ensure sequential indices
|
287 |
-
logger.info(f"Selected questions: {user_questions[['Skill', 'Question']].to_dict(orient='records')}")
|
288 |
-
logger.info(f"Number of selected questions: {len(user_questions)}")
|
289 |
-
|
290 |
-
if len(user_questions) != len(user_skills):
|
291 |
-
logger.error(f"Number of selected questions ({len(user_questions)}) does not match number of skills ({len(user_skills)}).")
|
292 |
-
return jsonify({"error": f"Internal error: Number of selected questions ({len(user_questions)}) does not match number of skills ({len(user_skills)})."}), 500
|
293 |
-
|
294 |
-
user_responses = []
|
295 |
-
for idx, row in user_questions.iterrows():
|
296 |
-
logger.debug(f"Pairing question for skill '{row['Skill']}' with answer at index {idx}")
|
297 |
-
if idx >= len(answers):
|
298 |
-
logger.error(f"Index out of range: idx={idx}, len(answers)={len(answers)}")
|
299 |
-
return jsonify({"error": f"Internal error: Index {idx} out of range for answers list of length {len(answers)}."}), 500
|
300 |
-
answer = answers[idx]
|
301 |
-
if not answer or answer.lower() == 'skip':
|
302 |
-
user_responses.append((row['Skill'], None, row['Question']))
|
303 |
-
else:
|
304 |
-
user_responses.append((row['Skill'], answer, row['Question']))
|
305 |
-
|
306 |
try:
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
except Exception as e:
|
313 |
-
logger.error(f"
|
314 |
-
return jsonify({"error": "
|
315 |
-
|
316 |
-
user_scores = {}
|
317 |
-
ai_flags = {}
|
318 |
-
scores_list = []
|
319 |
-
skipped_questions = [f"{skill} ({question})" for skill, user_code, question in user_responses if user_code is None]
|
320 |
-
for skill, score, is_ai in results:
|
321 |
-
if skill in user_scores:
|
322 |
-
user_scores[skill] = max(user_scores[skill], score)
|
323 |
-
ai_flags[skill] = ai_flags[skill] or is_ai
|
324 |
-
else:
|
325 |
-
user_scores[skill] = score
|
326 |
-
ai_flags[skill] = is_ai
|
327 |
-
scores_list.append(score)
|
328 |
-
|
329 |
-
mean_score = np.mean(scores_list) if scores_list else 50
|
330 |
-
dynamic_threshold = max(40, mean_score)
|
331 |
-
weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]
|
332 |
-
|
333 |
-
assessment_results = [
|
334 |
-
(skill, f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}", f"{score:.2f}%", "AI-Generated" if ai_flags[skill] else "Human-Written")
|
335 |
-
for skill, score in user_scores.items()
|
336 |
-
]
|
337 |
-
assessment_output = tabulate(assessment_results, headers=["Skill", "Progress", "Score", "Origin"], tablefmt="grid")
|
338 |
-
if skipped_questions:
|
339 |
-
assessment_output += f"\nSkipped Questions: {skipped_questions}"
|
340 |
-
assessment_output += f"\nMean Score: {mean_score:.2f}, Dynamic Threshold: {dynamic_threshold:.2f}"
|
341 |
-
assessment_output += f"\nWeak Skills: {weak_skills if weak_skills else 'None'}"
|
342 |
-
|
343 |
-
skills_to_recommend = weak_skills if weak_skills else user_skills
|
344 |
-
upgrade_flag = not weak_skills
|
345 |
-
recommended_courses = recommend_courses(skills_to_recommend, user_level, upgrade=upgrade_flag)
|
346 |
-
courses_output = tabulate(recommended_courses, headers=["Course", "Organization"], tablefmt="grid") if recommended_courses else "None"
|
347 |
-
|
348 |
-
recommended_jobs = recommend_jobs(user_skills, user_level)
|
349 |
-
jobs_output = tabulate(recommended_jobs, headers=["Job Title", "Company", "Location"], tablefmt="grid")
|
350 |
-
|
351 |
-
response = {
|
352 |
-
"user_info": f"User: {user_name}\nSkills: {user_skills}\nLevel: {user_level}",
|
353 |
-
"assessment_results": assessment_output,
|
354 |
-
"recommended_courses": courses_output,
|
355 |
-
"recommended_jobs": jobs_output
|
356 |
-
}
|
357 |
-
logger.info(f"Response: {response}")
|
358 |
-
return jsonify(response)
|
359 |
|
360 |
if __name__ == '__main__':
|
361 |
-
app.run(host='0.0.0.0', port=7860)
|
|
|
22 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
|
24 |
# Paths for saving artifacts
|
25 |
+
MODEL_DIR = "./saved_models"
|
26 |
+
FALLBACK_MODEL_DIR = "/tmp/saved_models"
|
27 |
|
28 |
+
# Directory handling with improved error handling
|
29 |
try:
|
30 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
31 |
+
logger.info(f"Using model directory: {MODEL_DIR}")
|
32 |
chosen_model_dir = MODEL_DIR
|
33 |
+
except Exception as e:
|
34 |
+
logger.warning(f"Failed to create {MODEL_DIR}: {e}. Using fallback directory.")
|
35 |
os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
|
36 |
chosen_model_dir = FALLBACK_MODEL_DIR
|
|
|
|
|
|
|
37 |
|
38 |
# Update paths based on the chosen directory
|
39 |
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
|
|
|
43 |
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
|
44 |
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
|
45 |
|
46 |
+
# Improved dataset loading with fallback
|
47 |
def load_dataset(file_path, required_columns=[]):
|
48 |
try:
|
49 |
df = pd.read_csv(file_path)
|
50 |
for col in required_columns:
|
51 |
if col not in df.columns:
|
52 |
logger.warning(f"Column '{col}' missing in {file_path}. Using default values.")
|
53 |
+
df[col] = ""
|
54 |
return df
|
55 |
+
except Exception as e:
|
56 |
+
logger.error(f"Error loading {file_path}: {e}")
|
57 |
return None
|
58 |
|
59 |
+
# Load datasets with fallbacks
|
60 |
+
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"]) or pd.DataFrame({
|
61 |
+
'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
|
62 |
+
'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question',
|
63 |
+
'Intermediate Python question', 'Basic Kubernetes question'],
|
64 |
+
'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
|
65 |
+
})
|
66 |
+
|
67 |
+
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"]) or pd.DataFrame({
|
68 |
+
'skills': ['Docker', 'Jenkins', 'Azure', 'Cybersecurity'],
|
69 |
+
'course_title': ['Docker Mastery', 'Jenkins CI/CD', 'Azure Fundamentals', 'Cybersecurity Basics'],
|
70 |
+
'Organization': ['Udemy', 'Coursera', 'Microsoft', 'edX'],
|
71 |
+
'level': ['Intermediate', 'Intermediate', 'Intermediate', 'Advanced'],
|
72 |
+
'popularity': [0.9, 0.85, 0.95, 0.8],
|
73 |
+
'completion_rate': [0.7, 0.65, 0.8, 0.6]
|
74 |
+
})
|
75 |
+
|
76 |
+
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"]) or pd.DataFrame({
|
77 |
+
'job_title': ['DevOps Engineer', 'Cloud Architect'],
|
78 |
+
'company_name': ['Tech Corp', 'Cloud Inc'],
|
79 |
+
'location': ['Remote', 'Silicon Valley'],
|
80 |
+
'required_skills': ['Linux, Cloud', 'AWS, Kubernetes'],
|
81 |
+
'job_description': ['DevOps role description', 'Cloud architecture position']
|
82 |
+
})
|
83 |
+
|
84 |
+
# Model loading with validation
|
85 |
+
def load_model(model_class, path, default_name):
|
86 |
+
try:
|
87 |
+
return model_class.from_pretrained(path)
|
88 |
+
except Exception as e:
|
89 |
+
logger.warning(f"Failed to load model from {path}: {e}. Using default {default_name}.")
|
90 |
+
return model_class.from_pretrained(default_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH) if os.path.exists(UNIVERSAL_MODEL_PATH) else SentenceTransformer("all-MiniLM-L6-v2")
|
93 |
+
detector_model = load_model(AutoModelForSequenceClassification, DETECTOR_MODEL_PATH, "roberta-base-openai-detector")
|
94 |
+
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoTokenizer.from_pretrained("roberta-base-openai-detector")
|
95 |
+
|
96 |
+
# Enhanced resource initialization
|
97 |
def initialize_resources(user_skills):
|
98 |
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings
|
99 |
+
|
100 |
+
user_skills_lower = [s.lower() for s in user_skills]
|
101 |
+
needs_recompute = False
|
102 |
+
|
103 |
+
if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH]):
|
104 |
+
try:
|
105 |
+
with open(TFIDF_PATH, 'rb') as f:
|
106 |
+
tfidf_vectorizer = pickle.load(f)
|
107 |
+
with open(SKILL_TFIDF_PATH, 'rb') as f:
|
108 |
+
skill_tfidf = pickle.load(f)
|
109 |
+
with open(QUESTION_ANSWER_PATH, 'rb') as f:
|
110 |
+
question_to_answer = pickle.load(f)
|
111 |
+
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
|
112 |
+
|
113 |
+
if set(skill_tfidf.keys()) != set(user_skills_lower):
|
114 |
+
logger.info("Skill mismatch detected, recomputing resources")
|
115 |
+
needs_recompute = True
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error loading saved resources: {e}")
|
118 |
+
needs_recompute = True
|
|
|
119 |
else:
|
120 |
+
needs_recompute = True
|
121 |
+
|
122 |
+
if needs_recompute:
|
123 |
+
logger.info("Building new resources")
|
124 |
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
125 |
all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
|
126 |
tfidf_vectorizer.fit(all_texts)
|
127 |
+
|
128 |
+
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in user_skills}
|
129 |
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
|
130 |
+
answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True).cpu().numpy()
|
131 |
+
|
132 |
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
|
133 |
faiss_index.add(answer_embeddings)
|
134 |
+
|
135 |
+
# Save resources
|
136 |
+
with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
|
137 |
+
with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
|
138 |
+
with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
|
|
|
|
|
139 |
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
|
140 |
+
universal_model.save(UNIVERSAL_MODEL_PATH)
|
141 |
+
logger.info(f"Resources saved to {chosen_model_dir}")
|
|
|
|
|
142 |
|
143 |
+
# Enhanced evaluation with error handling
|
144 |
def evaluate_response(args):
|
145 |
+
try:
|
146 |
+
skill, user_answer, question = args
|
147 |
+
if not user_answer:
|
148 |
+
return skill, 0.0, False
|
149 |
+
|
150 |
+
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
|
151 |
+
with torch.no_grad():
|
152 |
+
logits = detector_model(**inputs).logits
|
153 |
+
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
|
154 |
+
is_ai = probs[1] > 0.5
|
155 |
+
|
156 |
+
expected_answer = question_to_answer.get(question, "")
|
157 |
+
user_embedding = universal_model.encode(user_answer, convert_to_tensor=True)
|
158 |
+
expected_embedding = universal_model.encode(expected_answer, convert_to_tensor=True)
|
159 |
+
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
|
160 |
+
|
161 |
+
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
|
162 |
+
skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
|
163 |
+
relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
|
164 |
+
score *= max(0.5, min(1.0, relevance))
|
165 |
+
|
166 |
+
return skill, round(max(0, score), 2), is_ai
|
167 |
+
except Exception as e:
|
168 |
+
logger.error(f"Evaluation error for {skill}: {e}")
|
169 |
+
return skill, 0.0, False
|
170 |
+
|
171 |
+
# Improved course recommendation
|
172 |
def recommend_courses(skills_to_improve, user_level, upgrade=False):
|
173 |
+
try:
|
174 |
+
if not skills_to_improve or courses_df.empty:
|
175 |
+
return []
|
176 |
+
|
177 |
+
# Add missing columns if needed
|
178 |
+
if 'popularity' not in courses_df:
|
179 |
+
courses_df['popularity'] = 0.8
|
180 |
+
if 'completion_rate' not in courses_df:
|
181 |
+
courses_df['completion_rate'] = 0.7
|
182 |
+
|
183 |
+
skill_embeddings = universal_model.encode(skills_to_improve, convert_to_tensor=True)
|
184 |
+
course_embeddings = universal_model.encode(courses_df['skills'].fillna(""), convert_to_tensor=True)
|
185 |
+
similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).numpy()
|
186 |
+
|
187 |
+
total_scores = 0.6 * similarities + 0.2 * courses_df['popularity'].values + 0.2 * courses_df['completion_rate'].values
|
188 |
+
|
189 |
+
recommendations = []
|
190 |
+
target_level = 'Advanced' if upgrade else user_level
|
191 |
+
for i, skill in enumerate(skills_to_improve):
|
192 |
+
idx = np.argsort(-total_scores[i])[:5]
|
193 |
+
candidates = courses_df.iloc[idx]
|
194 |
+
candidates = candidates[candidates['level'].str.contains(target_level, case=False)]
|
195 |
+
recommendations.extend(candidates[['course_title', 'Organization']].values.tolist()[:3])
|
196 |
+
|
197 |
+
return list(dict.fromkeys(map(tuple, recommendations)))
|
198 |
+
except Exception as e:
|
199 |
+
logger.error(f"Course recommendation error: {e}")
|
200 |
return []
|
201 |
+
|
202 |
+
# Enhanced job recommendation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
def recommend_jobs(user_skills, user_level):
|
204 |
+
try:
|
205 |
+
if jobs_df.empty:
|
206 |
+
return []
|
207 |
+
|
208 |
+
job_field = 'required_skills' if 'required_skills' in jobs_df.columns else 'job_description'
|
209 |
+
job_embeddings = universal_model.encode(jobs_df[job_field].fillna(""), convert_to_tensor=True)
|
210 |
+
user_embedding = universal_model.encode(" ".join(user_skills), convert_to_tensor=True)
|
211 |
+
similarities = util.pytorch_cos_sim(user_embedding, job_embeddings).numpy()[0]
|
212 |
+
|
213 |
+
level_scores = jobs_df.get('level', 'Intermediate').apply(
|
214 |
+
lambda x: 1 - abs({'Beginner':0, 'Intermediate':1, 'Advanced':2}.get(x,1) -
|
215 |
+
{'Beginner':0, 'Intermediate':1, 'Advanced':2}[user_level])/2
|
216 |
+
)
|
217 |
+
total_scores = 0.6 * similarities + 0.4 * level_scores
|
218 |
+
top_idx = np.argsort(-total_scores)[:5]
|
219 |
+
|
220 |
+
return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'],
|
221 |
+
jobs_df.iloc[i].get('location', 'Remote')) for i in top_idx]
|
222 |
+
except Exception as e:
|
223 |
+
logger.error(f"Job recommendation error: {e}")
|
224 |
+
return []
|
225 |
+
|
226 |
+
# Flask application setup
|
227 |
app = Flask(__name__)
|
228 |
|
229 |
+
@app.route('/')
|
230 |
+
def health_check():
|
231 |
+
return jsonify({"status": "active", "model_dir": chosen_model_dir})
|
232 |
+
|
233 |
@app.route('/assess', methods=['POST'])
|
234 |
def assess_skills():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
try:
|
236 |
+
data = request.get_json()
|
237 |
+
if not data or 'skills' not in data or 'answers' not in data:
|
238 |
+
return jsonify({"error": "Missing required fields"}), 400
|
239 |
+
|
240 |
+
user_skills = [s.strip() for s in data['skills'] if isinstance(s, str)]
|
241 |
+
answers = [a.strip() for a in data['answers'] if isinstance(a, str)]
|
242 |
+
user_level = data.get('user_level', 'Intermediate').strip()
|
243 |
+
|
244 |
+
if len(answers) != len(user_skills):
|
245 |
+
return jsonify({"error": "Answers count must match skills count"}), 400
|
246 |
+
|
247 |
+
initialize_resources(user_skills)
|
248 |
+
|
249 |
+
# Get relevant questions
|
250 |
+
user_questions = questions_df[questions_df['Skill'].str.lower().isin([s.lower() for s in user_skills])]
|
251 |
+
if user_questions.empty:
|
252 |
+
user_questions = questions_df.sample(len(user_skills))
|
253 |
+
|
254 |
+
user_questions = user_questions.sample(len(user_skills)).reset_index(drop=True)
|
255 |
+
responses = list(zip(user_questions['Skill'], answers, user_questions['Question']))
|
256 |
+
|
257 |
+
# Parallel processing with error handling
|
258 |
+
with Pool(processes=min(cpu_count(), 4)) as pool:
|
259 |
+
results = pool.map(evaluate_response, responses)
|
260 |
+
|
261 |
+
# Process results
|
262 |
+
assessment = []
|
263 |
+
scores = []
|
264 |
+
for skill, score, is_ai in results:
|
265 |
+
assessment.append(f"{skill}: {score}% ({'AI' if is_ai else 'Human'})")
|
266 |
+
scores.append(score)
|
267 |
+
|
268 |
+
mean_score = np.mean(scores) if scores else 0
|
269 |
+
weak_skills = [skill for skill, score, _ in results if score < max(60, mean_score)]
|
270 |
+
|
271 |
+
# Generate recommendations
|
272 |
+
courses = recommend_courses(weak_skills or user_skills, user_level, upgrade=not weak_skills)
|
273 |
+
jobs = recommend_jobs(user_skills, user_level)
|
274 |
+
|
275 |
+
return jsonify({
|
276 |
+
"assessment": assessment,
|
277 |
+
"mean_score": round(mean_score, 1),
|
278 |
+
"weak_skills": weak_skills,
|
279 |
+
"courses": courses[:3], # Top 3 courses
|
280 |
+
"jobs": jobs[:5] # Top 5 jobs
|
281 |
+
})
|
282 |
except Exception as e:
|
283 |
+
logger.error(f"Assessment error: {e}")
|
284 |
+
return jsonify({"error": "Internal server error"}), 500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
if __name__ == '__main__':
|
287 |
+
app.run(host='0.0.0.0', port=7860, threaded=True)
|