Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
import torch
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import faiss
|
|
|
6 |
import pickle
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
import scipy.special
|
|
|
9 |
from flask import Flask, request, jsonify
|
10 |
import logging
|
11 |
-
from pymongo import MongoClient
|
12 |
-
import pandas as pd
|
13 |
|
14 |
# Set up logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
# Disable tokenizers parallelism
|
19 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
|
21 |
# Paths for saving artifacts
|
@@ -34,127 +34,282 @@ except Exception as e:
|
|
34 |
# Update paths
|
35 |
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
|
36 |
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
|
|
|
|
|
|
|
37 |
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
|
38 |
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Load models
|
48 |
-
universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH) if os.path.exists(UNIVERSAL_MODEL_PATH) else SentenceTransformer("all-MiniLM-L6-v2")
|
49 |
-
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoTokenizer.from_pretrained("roberta-base-openai-detector")
|
50 |
-
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH) if os.path.exists(DETECTOR_MODEL_PATH) else AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
|
51 |
-
|
52 |
-
# Global variables
|
53 |
faiss_index = None
|
54 |
answer_embeddings = None
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
#
|
59 |
-
def
|
60 |
-
global answer_embeddings, course_embeddings, job_embeddings, faiss_index
|
61 |
try:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
|
69 |
-
|
70 |
-
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
|
71 |
-
job_skills = [job['skills'] for job in jobs] # Adjust based on your Job schema
|
72 |
-
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
|
73 |
-
|
74 |
-
# Build FAISS index
|
75 |
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
|
76 |
faiss_index.add(answer_embeddings)
|
77 |
-
|
78 |
-
#
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
-
logger.error(f"Error
|
86 |
raise
|
87 |
|
88 |
-
#
|
89 |
def evaluate_response(args):
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
return skill, 0.0, False
|
93 |
|
94 |
-
|
95 |
-
with torch.no_grad():
|
96 |
-
logits = detector_model(**inputs).logits
|
97 |
-
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
|
98 |
-
is_ai = probs[1] > 0.5
|
99 |
-
|
100 |
-
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
|
101 |
-
expected_embedding = torch.tensor(answer_embeddings[question_idx])
|
102 |
-
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
|
103 |
-
return skill, round(max(0, score), 2), is_ai
|
104 |
-
|
105 |
-
# Recommend courses from MongoDB
|
106 |
def recommend_courses(skills_to_improve, user_level, upgrade=False):
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
return []
|
113 |
|
114 |
-
|
115 |
-
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
|
116 |
-
torch.tensor(course_embeddings)
|
117 |
-
).cpu().numpy()
|
118 |
-
|
119 |
-
courses = list(db.courses.find())
|
120 |
-
popularity = [course.get('popularity', 0.8) for course in courses]
|
121 |
-
completion_rate = [course.get('completion_rate', 0.7) for course in courses]
|
122 |
-
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * np.array(popularity) + 0.2 * np.array(completion_rate)
|
123 |
-
|
124 |
-
target_level = 'Advanced' if upgrade else user_level
|
125 |
-
idx = np.argsort(-total_scores)[:5]
|
126 |
-
candidates = [courses[i] for i in idx]
|
127 |
-
filtered_candidates = [c for c in candidates if target_level.lower() in c.get('level', 'Intermediate').lower()]
|
128 |
-
return filtered_candidates[:3] if filtered_candidates else candidates[:3]
|
129 |
-
|
130 |
-
# Recommend jobs from MongoDB
|
131 |
def recommend_jobs(user_skills, user_level):
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
return []
|
138 |
|
139 |
-
|
140 |
-
torch.tensor(universal_model.encode(questions_df['Skill'].unique()[skill_indices].tolist(), batch_size=128)),
|
141 |
-
torch.tensor(job_embeddings)
|
142 |
-
).cpu().numpy()
|
143 |
-
|
144 |
-
jobs = list(db.jobs.find())
|
145 |
-
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
|
146 |
-
user_level_num = level_map.get(user_level, 1)
|
147 |
-
level_scores = [1 - abs(level_map.get(job.get('level', 'Intermediate'), 1) - user_level_num) / 2 for job in jobs]
|
148 |
-
location_pref = [1.0 if job.get('location', 'Remote') in ['Islamabad', 'Karachi'] else 0.7 for job in jobs]
|
149 |
-
total_job_scores = 0.5 * np.max(similarities, axis=0) + 0.2 * np.array(level_scores) + 0.1 * np.array(location_pref)
|
150 |
-
|
151 |
-
top_job_indices = np.argsort(-total_job_scores)[:5]
|
152 |
-
return [(jobs[i]['jobTitle'], jobs[i]['companyName'], jobs[i].get('location', 'Remote')) for i in top_job_indices]
|
153 |
-
|
154 |
-
# Flask app setup
|
155 |
app = Flask(__name__)
|
156 |
|
157 |
-
@app.route('/
|
158 |
def health_check():
|
159 |
return jsonify({"status": "active", "model_dir": chosen_model_dir})
|
160 |
|
@@ -172,10 +327,8 @@ def assess_skills():
|
|
172 |
if len(answers) != len(user_skills):
|
173 |
return jsonify({"error": "Answers count must match skills count"}), 400
|
174 |
|
175 |
-
|
176 |
|
177 |
-
# Generate questions (for now, use CSV as fallback; move to MongoDB later)
|
178 |
-
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv")
|
179 |
user_questions = []
|
180 |
for skill in user_skills:
|
181 |
skill_questions = questions_df[questions_df['Skill'] == skill]
|
@@ -235,7 +388,7 @@ def assess_skills():
|
|
235 |
"weak_skills": weak_skills,
|
236 |
"skipped_questions": skipped_questions
|
237 |
},
|
238 |
-
"recommended_courses": [
|
239 |
"recommended_jobs": jobs[:5]
|
240 |
})
|
241 |
except Exception as e:
|
|
|
1 |
import os
|
2 |
+
import pandas as pd
|
3 |
import torch
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
import faiss
|
6 |
+
import numpy as np
|
7 |
import pickle
|
8 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
9 |
import scipy.special
|
10 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
from flask import Flask, request, jsonify
|
12 |
import logging
|
|
|
|
|
13 |
|
14 |
# Set up logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# Disable tokenizers parallelism to avoid fork-related deadlocks
|
19 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
|
21 |
# Paths for saving artifacts
|
|
|
34 |
# Update paths
|
35 |
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
|
36 |
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
|
37 |
+
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
|
38 |
+
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
|
39 |
+
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
|
40 |
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")
|
41 |
ANSWER_EMBEDDINGS_PATH = os.path.join(chosen_model_dir, "answer_embeddings.pkl")
|
42 |
+
COURSE_SIMILARITY_PATH = os.path.join(chosen_model_dir, "course_similarity.pkl")
|
43 |
+
JOB_SIMILARITY_PATH = os.path.join(chosen_model_dir, "job_similarity.pkl")
|
44 |
|
45 |
+
# Global variables for precomputed data
|
46 |
+
tfidf_vectorizer = None
|
47 |
+
skill_tfidf = None
|
48 |
+
question_to_answer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
faiss_index = None
|
50 |
answer_embeddings = None
|
51 |
+
course_similarity = None
|
52 |
+
job_similarity = None
|
53 |
|
54 |
+
# Improved dataset loading with fallback
|
55 |
+
def load_dataset(file_path, required_columns=[], additional_columns=['popularity', 'completion_rate'], fallback_data=None):
|
|
|
56 |
try:
|
57 |
+
df = pd.read_csv(file_path)
|
58 |
+
missing_required = [col for col in required_columns if col not in df.columns]
|
59 |
+
missing_additional = [col for col in additional_columns if col not in df.columns]
|
60 |
+
|
61 |
+
# Handle missing required columns
|
62 |
+
if missing_required:
|
63 |
+
logger.warning(f"Required columns {missing_required} missing in {file_path}. Adding empty values.")
|
64 |
+
for col in missing_required:
|
65 |
+
df[col] = ""
|
66 |
+
|
67 |
+
# Handle missing additional columns (popularity, completion_rate, etc.)
|
68 |
+
if missing_additional:
|
69 |
+
logger.warning(f"Additional columns {missing_additional} missing in {file_path}. Adding default values.")
|
70 |
+
for col in missing_additional:
|
71 |
+
if col == 'popularity':
|
72 |
+
df[col] = 0.8 # Default value for popularity
|
73 |
+
elif col == 'completion_rate':
|
74 |
+
df[col] = 0.7 # Default value for completion_rate
|
75 |
+
else:
|
76 |
+
df[col] = 0.0 # Default for other additional columns
|
77 |
+
|
78 |
+
# Ensure 'level' column has valid values (not empty)
|
79 |
+
if 'level' in df.columns:
|
80 |
+
df['level'] = df['level'].apply(lambda x: 'Intermediate' if pd.isna(x) or x.strip() == "" else x)
|
81 |
+
else:
|
82 |
+
logger.warning(f"'level' column missing in {file_path}. Adding default 'Intermediate'.")
|
83 |
+
df['level'] = 'Intermediate'
|
84 |
+
|
85 |
+
return df
|
86 |
+
except ValueError as ve:
|
87 |
+
logger.error(f"ValueError loading {file_path}: {ve}. Using fallback data.")
|
88 |
+
if fallback_data is not None:
|
89 |
+
logger.info(f"Using fallback data for {file_path}")
|
90 |
+
return pd.DataFrame(fallback_data)
|
91 |
+
return None
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Error loading {file_path}: {e}. Using fallback data.")
|
94 |
+
if fallback_data is not None:
|
95 |
+
logger.info(f"Using fallback data for {file_path}")
|
96 |
+
return pd.DataFrame(fallback_data)
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Load datasets with fallbacks
|
100 |
+
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"], [], {
|
101 |
+
'Skill': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
|
102 |
+
'Question': ['Advanced Linux question', 'Advanced Git question', 'Basic Node.js question',
|
103 |
+
'Intermediate Python question', 'Basic Kubernetes question'],
|
104 |
+
'Answer': ['Linux answer', 'Git answer', 'Node.js answer', 'Python answer', 'Kubernetes answer']
|
105 |
+
})
|
106 |
+
|
107 |
+
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"], ['popularity', 'completion_rate'], {
|
108 |
+
'skills': ['Linux', 'Git', 'Node.js', 'Python', 'Kubernetes'],
|
109 |
+
'course_title': ['Linux Admin', 'Git Mastery', 'Node.js Advanced', 'Python for Data', 'Kubernetes Basics'],
|
110 |
+
'Organization': ['Coursera', 'Udemy', 'Pluralsight', 'edX', 'Linux Foundation'],
|
111 |
+
'level': ['Intermediate', 'Intermediate', 'Advanced', 'Advanced', 'Intermediate'],
|
112 |
+
'popularity': [0.85, 0.9, 0.8, 0.95, 0.9],
|
113 |
+
'completion_rate': [0.65, 0.7, 0.6, 0.8, 0.75]
|
114 |
+
})
|
115 |
+
|
116 |
+
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"], [], {
|
117 |
+
'job_title': ['DevOps Engineer', 'Cloud Architect', 'Software Engineer', 'Data Scientist', 'Security Analyst'],
|
118 |
+
'company_name': ['Tech Corp', 'Cloud Inc', 'Tech Solutions', 'Data Co', 'SecuriTech'],
|
119 |
+
'location': ['Remote', 'Islamabad', 'Karachi', 'Remote', 'Islamabad'],
|
120 |
+
'required_skills': ['Linux, Kubernetes', 'AWS, Kubernetes', 'Python, Node.js', 'Python, SQL', 'Cybersecurity, Linux'],
|
121 |
+
'job_description': ['DevOps role description', 'Cloud architecture position', 'Software engineering role', 'Data science position', 'Security analyst role'],
|
122 |
+
'level': ['Intermediate', 'Advanced', 'Intermediate', 'Intermediate', 'Intermediate']
|
123 |
+
})
|
124 |
+
|
125 |
+
# Validate questions_df
|
126 |
+
if questions_df is None or questions_df.empty:
|
127 |
+
logger.error("questions_df is empty or could not be loaded. Exiting.")
|
128 |
+
exit(1)
|
129 |
+
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
|
130 |
+
logger.error("questions_df is missing required columns. Exiting.")
|
131 |
+
exit(1)
|
132 |
+
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {list(questions_df['Skill'].unique())}")
|
133 |
+
|
134 |
+
# Load or Initialize Models with Fallback
|
135 |
+
def load_universal_model():
|
136 |
+
default_model = "all-MiniLM-L6-v2"
|
137 |
+
try:
|
138 |
+
if os.path.exists(UNIVERSAL_MODEL_PATH):
|
139 |
+
logger.info(f"Loading universal model from {UNIVERSAL_MODEL_PATH}")
|
140 |
+
return SentenceTransformer(UNIVERSAL_MODEL_PATH)
|
141 |
+
else:
|
142 |
+
logger.info(f"Loading universal model: {default_model}")
|
143 |
+
model = SentenceTransformer(default_model)
|
144 |
+
model.save(UNIVERSAL_MODEL_PATH)
|
145 |
+
return model
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Failed to load universal model {default_model}: {e}. Exiting.")
|
148 |
+
exit(1)
|
149 |
+
|
150 |
+
universal_model = load_universal_model()
|
151 |
+
|
152 |
+
if os.path.exists(DETECTOR_MODEL_PATH):
|
153 |
+
detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
|
154 |
+
detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
|
155 |
+
else:
|
156 |
+
detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
|
157 |
+
detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")
|
158 |
+
|
159 |
+
# Load Precomputed Resources
|
160 |
+
def load_precomputed_resources():
|
161 |
+
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
|
162 |
+
if all(os.path.exists(p) for p in [TFIDF_PATH, SKILL_TFIDF_PATH, QUESTION_ANSWER_PATH, FAISS_INDEX_PATH, ANSWER_EMBEDDINGS_PATH, COURSE_SIMILARITY_PATH, JOB_SIMILARITY_PATH]):
|
163 |
+
try:
|
164 |
+
with open(TFIDF_PATH, 'rb') as f: tfidf_vectorizer = pickle.load(f)
|
165 |
+
with open(SKILL_TFIDF_PATH, 'rb') as f: skill_tfidf = pickle.load(f)
|
166 |
+
with open(QUESTION_ANSWER_PATH, 'rb') as f: question_to_answer = pickle.load(f)
|
167 |
+
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
|
168 |
+
with open(ANSWER_EMBEDDINGS_PATH, 'rb') as f: answer_embeddings = pickle.load(f)
|
169 |
+
with open(COURSE_SIMILARITY_PATH, 'rb') as f: course_similarity = pickle.load(f)
|
170 |
+
with open(JOB_SIMILARITY_PATH, 'rb') as f: job_similarity = pickle.load(f)
|
171 |
+
logger.info("Loaded precomputed resources successfully")
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Error loading precomputed resources: {e}")
|
174 |
+
precompute_resources()
|
175 |
+
else:
|
176 |
+
precompute_resources()
|
177 |
+
|
178 |
+
# Precompute Resources Offline (to be run separately)
|
179 |
+
def precompute_resources():
|
180 |
+
global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings, course_similarity, job_similarity
|
181 |
+
logger.info("Precomputing resources offline")
|
182 |
+
try:
|
183 |
+
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
|
184 |
+
all_texts = questions_df['Answer'].tolist() + questions_df['Question'].tolist()
|
185 |
+
tfidf_vectorizer.fit(all_texts)
|
186 |
+
|
187 |
+
skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill]).toarray()[0] for skill in questions_df['Skill'].unique()}
|
188 |
+
question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
|
189 |
answer_embeddings = universal_model.encode(questions_df['Answer'].tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu").cpu().numpy()
|
190 |
+
|
|
|
|
|
|
|
|
|
|
|
191 |
faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
|
192 |
faiss_index.add(answer_embeddings)
|
193 |
+
|
194 |
+
# Precompute course similarities
|
195 |
+
course_skills = courses_df['skills'].fillna("").tolist()
|
196 |
+
course_embeddings = universal_model.encode(course_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
|
197 |
+
skill_embeddings = universal_model.encode(questions_df['Skill'].unique().tolist(), batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
|
198 |
+
course_similarity = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy()
|
199 |
+
|
200 |
+
# Precompute job similarities
|
201 |
+
job_skills = jobs_df['required_skills'].fillna("").tolist()
|
202 |
+
job_embeddings = universal_model.encode(job_skills, batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")
|
203 |
+
job_similarity = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy()
|
204 |
+
|
205 |
+
# Save precomputed resources
|
206 |
+
with open(TFIDF_PATH, 'wb') as f: pickle.dump(tfidf_vectorizer, f)
|
207 |
+
with open(SKILL_TFIDF_PATH, 'wb') as f: pickle.dump(skill_tfidf, f)
|
208 |
+
with open(QUESTION_ANSWER_PATH, 'wb') as f: pickle.dump(question_to_answer, f)
|
209 |
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
|
210 |
+
with open(ANSWER_EMBEDDINGS_PATH, 'wb') as f: pickle.dump(answer_embeddings, f)
|
211 |
+
with open(COURSE_SIMILARITY_PATH, 'wb') as f: pickle.dump(course_similarity, f)
|
212 |
+
with open(JOB_SIMILARITY_PATH, 'wb') as f: pickle.dump(job_similarity, f)
|
213 |
+
universal_model.save(UNIVERSAL_MODEL_PATH)
|
214 |
+
logger.info(f"Precomputed resources saved to {chosen_model_dir}")
|
215 |
except Exception as e:
|
216 |
+
logger.error(f"Error during precomputation: {e}")
|
217 |
raise
|
218 |
|
219 |
+
# Evaluation with precomputed data
|
220 |
def evaluate_response(args):
|
221 |
+
try:
|
222 |
+
skill, user_answer, question_idx = args
|
223 |
+
if not user_answer:
|
224 |
+
return skill, 0.0, False
|
225 |
+
|
226 |
+
inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
|
227 |
+
with torch.no_grad():
|
228 |
+
logits = detector_model(**inputs).logits
|
229 |
+
probs = scipy.special.softmax(logits, axis=1).tolist()[0]
|
230 |
+
is_ai = probs[1] > 0.5
|
231 |
+
|
232 |
+
user_embedding = universal_model.encode([user_answer], batch_size=128, convert_to_tensor=True, device="cuda" if torch.cuda.is_available() else "cpu")[0]
|
233 |
+
expected_embedding = torch.tensor(answer_embeddings[question_idx])
|
234 |
+
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100
|
235 |
+
|
236 |
+
user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
|
237 |
+
skill_vec = skill_tfidf.get(skill.lower(), np.zeros_like(user_tfidf))
|
238 |
+
relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
|
239 |
+
score *= max(0.5, min(1.0, relevance))
|
240 |
+
|
241 |
+
return skill, round(max(0, score), 2), is_ai
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"Evaluation error for {skill}: {e}")
|
244 |
return skill, 0.0, False
|
245 |
|
246 |
+
# Course recommendation with precomputed similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
def recommend_courses(skills_to_improve, user_level, upgrade=False):
|
248 |
+
try:
|
249 |
+
if not skills_to_improve or courses_df.empty:
|
250 |
+
logger.info("No skills to improve or courses_df is empty.")
|
251 |
+
return []
|
252 |
+
|
253 |
+
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in skills_to_improve if skill in questions_df['Skill'].unique()]
|
254 |
+
if not skill_indices:
|
255 |
+
logger.info("No matching skill indices found.")
|
256 |
+
return []
|
257 |
+
|
258 |
+
similarities = course_similarity[skill_indices]
|
259 |
+
# Use default arrays to avoid KeyError
|
260 |
+
popularity = courses_df['popularity'].values if 'popularity' in courses_df else np.full(len(courses_df), 0.8)
|
261 |
+
completion_rate = courses_df['completion_rate'].values if 'completion_rate' in courses_df else np.full(len(courses_df), 0.7)
|
262 |
+
total_scores = 0.6 * np.max(similarities, axis=0) + 0.2 * popularity + 0.2 * completion_rate
|
263 |
+
|
264 |
+
target_level = 'Advanced' if upgrade else user_level
|
265 |
+
idx = np.argsort(-total_scores)[:5]
|
266 |
+
candidates = courses_df.iloc[idx]
|
267 |
+
|
268 |
+
# Filter by level, but fallback to all courses if none match
|
269 |
+
filtered_candidates = candidates[candidates['level'].str.contains(target_level, case=False, na=False)]
|
270 |
+
if filtered_candidates.empty:
|
271 |
+
logger.warning(f"No courses found for level {target_level}. Returning top courses regardless of level.")
|
272 |
+
filtered_candidates = candidates
|
273 |
+
|
274 |
+
return filtered_candidates[['course_title', 'Organization']].values.tolist()[:3]
|
275 |
+
except Exception as e:
|
276 |
+
logger.error(f"Course recommendation error: {e}")
|
277 |
return []
|
278 |
|
279 |
+
# Job recommendation with precomputed similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
def recommend_jobs(user_skills, user_level):
|
281 |
+
try:
|
282 |
+
if jobs_df.empty:
|
283 |
+
return []
|
284 |
+
|
285 |
+
skill_indices = [list(questions_df['Skill'].unique()).index(skill) for skill in user_skills if skill in questions_df['Skill'].unique()]
|
286 |
+
if not skill_indices:
|
287 |
+
return []
|
288 |
+
|
289 |
+
similarities = job_similarity[skill_indices]
|
290 |
+
total_scores = 0.5 * np.max(similarities, axis=0)
|
291 |
+
|
292 |
+
if 'level' not in jobs_df.columns:
|
293 |
+
jobs_df['level'] = 'Intermediate'
|
294 |
+
level_col = jobs_df['level'].astype(str)
|
295 |
+
level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
|
296 |
+
user_level_num = level_map.get(user_level, 1)
|
297 |
+
level_scores = level_col.apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num)/2)
|
298 |
+
|
299 |
+
location_pref = jobs_df.get('location', pd.Series(['Remote'] * len(jobs_df))).apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7)
|
300 |
+
total_job_scores = total_scores + 0.2 * level_scores + 0.1 * location_pref
|
301 |
+
top_job_indices = np.argsort(-total_job_scores)[:5]
|
302 |
+
|
303 |
+
return [(jobs_df.iloc[i]['job_title'], jobs_df.iloc[i]['company_name'],
|
304 |
+
jobs_df.iloc[i].get('location', 'Remote')) for i in top_job_indices]
|
305 |
+
except Exception as e:
|
306 |
+
logger.error(f"Job recommendation error: {e}")
|
307 |
return []
|
308 |
|
309 |
+
# Flask application setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
app = Flask(__name__)
|
311 |
|
312 |
+
@app.route('/')
|
313 |
def health_check():
|
314 |
return jsonify({"status": "active", "model_dir": chosen_model_dir})
|
315 |
|
|
|
327 |
if len(answers) != len(user_skills):
|
328 |
return jsonify({"error": "Answers count must match skills count"}), 400
|
329 |
|
330 |
+
load_precomputed_resources() # Load precomputed resources before processing
|
331 |
|
|
|
|
|
332 |
user_questions = []
|
333 |
for skill in user_skills:
|
334 |
skill_questions = questions_df[questions_df['Skill'] == skill]
|
|
|
388 |
"weak_skills": weak_skills,
|
389 |
"skipped_questions": skipped_questions
|
390 |
},
|
391 |
+
"recommended_courses": courses[:3],
|
392 |
"recommended_jobs": jobs[:5]
|
393 |
})
|
394 |
except Exception as e:
|