Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,150 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from typing import Optional, Dict, List
|
4 |
-
import pandas as pd
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
-
import time
|
9 |
-
import os
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return "
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
return
|
86 |
-
|
87 |
-
@app.
|
88 |
-
def
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
"
|
141 |
-
"
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import Optional, Dict, List
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Set cache directory explicitly (optional, as Dockerfile ENV should handle this)
|
12 |
+
os.environ["HF_HOME"] = "/app/cache"
|
13 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
# Load datasets (updated path to match Dockerfile)
|
18 |
+
DATA_DIR = "/app/data/" # Changed from "data/" to "/app/data/"
|
19 |
+
job_df = pd.read_csv(os.path.join(DATA_DIR, "Updated_Job_Posting_Dataset.csv"), encoding="latin1")
|
20 |
+
course_df = pd.read_csv(os.path.join(DATA_DIR, "coursera_course_dataset_v2_no_null.csv"))
|
21 |
+
coding_df = pd.read_csv(os.path.join(DATA_DIR, "Software Questions.csv"), encoding="latin1")
|
22 |
+
|
23 |
+
# Preprocess datasets
|
24 |
+
coding_df.rename(columns={'Question': 'question', 'Answer': 'solutions'}, inplace=True)
|
25 |
+
job_df.rename(columns={'company_name': 'company', 'required_skills': 'skills'}, inplace=True)
|
26 |
+
course_df.rename(columns={'Title': 'course_title', 'Skills': 'skills'}, inplace=True)
|
27 |
+
coding_df.dropna(subset=['question', 'solutions'], inplace=True)
|
28 |
+
job_df["job_description"] = job_df["job_description"].fillna("")
|
29 |
+
|
30 |
+
# Load BERT model and vectorizer
|
31 |
+
bert_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
32 |
+
vectorizer = TfidfVectorizer()
|
33 |
+
|
34 |
+
# Pydantic model for request body
|
35 |
+
class UserInput(BaseModel):
|
36 |
+
name: str
|
37 |
+
skills: List[str] # Required list of skills
|
38 |
+
answers: Optional[Dict[str, Dict[str, str]]] = None # Optional answers
|
39 |
+
|
40 |
+
# Evaluate coding answers
|
41 |
+
def evaluate_coding_with_time(user_code, correct_code, start_time):
|
42 |
+
end_time = time.time()
|
43 |
+
execution_time = end_time - start_time
|
44 |
+
vectorized = vectorizer.fit_transform([user_code, correct_code])
|
45 |
+
similarity = cosine_similarity(vectorized)[0][1] * 100
|
46 |
+
if execution_time > 120:
|
47 |
+
similarity -= (execution_time - 120) * 0.1
|
48 |
+
return round(max(similarity, 0), 2)
|
49 |
+
|
50 |
+
# Get coding challenges
|
51 |
+
def get_coding_challenges(skills, num_questions=5):
|
52 |
+
skill_challenges = {}
|
53 |
+
for skill in skills:
|
54 |
+
relevant = coding_df[coding_df["question"].str.contains(skill, case=False, na=False)]
|
55 |
+
if not relevant.empty:
|
56 |
+
skill_challenges[skill] = relevant.sample(min(num_questions, len(relevant)))[["question", "solutions"]].to_dict(orient="records")
|
57 |
+
else:
|
58 |
+
skill_challenges[skill] = []
|
59 |
+
return skill_challenges
|
60 |
+
|
61 |
+
# Assign proficiency level
|
62 |
+
def get_proficiency_level(score):
|
63 |
+
if score >= 80:
|
64 |
+
return "Expert"
|
65 |
+
elif score >= 50:
|
66 |
+
return "Intermediate"
|
67 |
+
else:
|
68 |
+
return "Beginner"
|
69 |
+
|
70 |
+
# Recommend courses
|
71 |
+
def recommend_courses(weak_skills):
|
72 |
+
if not weak_skills:
|
73 |
+
return []
|
74 |
+
courses = course_df[course_df['skills'].str.contains('|'.join(weak_skills), case=False, na=False)]
|
75 |
+
return courses[['course_title', 'Organization']].head(5).to_dict(orient="records")
|
76 |
+
|
77 |
+
# Recommend jobs
|
78 |
+
def recommend_jobs(skills):
|
79 |
+
if not skills:
|
80 |
+
return []
|
81 |
+
job_df["job_embeddings"] = job_df["job_description"].apply(lambda x: bert_model.encode(str(x)))
|
82 |
+
user_embedding = bert_model.encode(" ".join(skills))
|
83 |
+
job_df["BERT_Similarity"] = job_df["job_embeddings"].apply(lambda x: cosine_similarity([x], [user_embedding])[0][0])
|
84 |
+
top_jobs = job_df.sort_values(by="BERT_Similarity", ascending=False).head(5)
|
85 |
+
return top_jobs[["job_title", "company", "location", "BERT_Similarity"]].to_dict(orient="records")
|
86 |
+
|
87 |
+
@app.get("/")
|
88 |
+
def read_root():
|
89 |
+
return {"message": "Skill Assessment API"}
|
90 |
+
|
91 |
+
@app.post("/assess")
|
92 |
+
def assess_skills(user_input: UserInput):
|
93 |
+
# Extract user data from request
|
94 |
+
user_name = user_input.name
|
95 |
+
user_skills = user_input.skills
|
96 |
+
|
97 |
+
if not user_skills:
|
98 |
+
raise HTTPException(status_code=400, detail="Skills list cannot be empty")
|
99 |
+
|
100 |
+
# Fetch coding challenges based on provided skills
|
101 |
+
challenges = get_coding_challenges(user_skills)
|
102 |
+
|
103 |
+
# Evaluate skills
|
104 |
+
user_scores = {}
|
105 |
+
for skill, challenge_list in challenges.items():
|
106 |
+
if not challenge_list:
|
107 |
+
user_scores[skill] = 0
|
108 |
+
continue
|
109 |
+
|
110 |
+
total_score = 0
|
111 |
+
num_questions = len(challenge_list)
|
112 |
+
|
113 |
+
if user_input.answers and skill in user_input.answers:
|
114 |
+
# Use provided answers
|
115 |
+
for challenge in challenge_list:
|
116 |
+
question = challenge["question"]
|
117 |
+
if question in user_input.answers[skill]:
|
118 |
+
start_time = time.time() - 10 # Simulate execution time
|
119 |
+
user_code = user_input.answers[skill][question]
|
120 |
+
correct_code = challenge["solutions"]
|
121 |
+
score = evaluate_coding_with_time(user_code, correct_code, start_time)
|
122 |
+
total_score += score
|
123 |
+
else:
|
124 |
+
total_score += 0 # No answer provided for this question
|
125 |
+
else:
|
126 |
+
# No answers provided; assign default score (50% per question)
|
127 |
+
total_score = 50 * num_questions
|
128 |
+
|
129 |
+
user_scores[skill] = round(total_score / num_questions, 2)
|
130 |
+
|
131 |
+
# Proficiency levels
|
132 |
+
proficiency_levels = {skill: get_proficiency_level(score) for skill, score in user_scores.items()}
|
133 |
+
weak_skills = [skill for skill, level in proficiency_levels.items() if level in ["Beginner", "Intermediate"]]
|
134 |
+
|
135 |
+
# Recommendations
|
136 |
+
courses = recommend_courses(weak_skills)
|
137 |
+
jobs = recommend_jobs(user_skills)
|
138 |
+
|
139 |
+
return {
|
140 |
+
"name": user_name,
|
141 |
+
"skills": user_skills,
|
142 |
+
"scores": user_scores,
|
143 |
+
"proficiency_levels": proficiency_levels,
|
144 |
+
"recommended_courses": courses,
|
145 |
+
"recommended_jobs": jobs
|
146 |
+
}
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
import uvicorn
|
150 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|