Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
# Initialize more lightweight models | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1) # Use CPU | |
sentence_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
# Simple in-memory user storage (replace with proper database in production) | |
users = {} | |
def get_embedding(text): | |
return sentence_model.encode(text) | |
def calculate_job_match(job_description, user_data): | |
job_embedding = get_embedding(job_description) | |
user_embedding = get_embedding(user_data) | |
similarity = cosine_similarity([job_embedding], [user_embedding])[0][0] | |
return similarity | |
def register(username, password, email): | |
if username in users: | |
return "Username already exists" | |
users[username] = {"password": password, "email": email, "user_data": ""} | |
return "Registered successfully" | |
def login(username, password): | |
if username not in users or users[username]["password"] != password: | |
return "Invalid username or password" | |
return "Logged in successfully" | |
def update_profile(username, email, user_data): | |
if username not in users: | |
return "User not found" | |
users[username]["email"] = email | |
users[username]["user_data"] = user_data | |
return "Profile updated successfully" | |
def generate_text(prompt, max_length=150, min_length=50): | |
summary = summarizer(prompt, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text'] | |
return summary | |
def generate_cv(username, job_description): | |
if username not in users: | |
return "User not found" | |
user_data = users[username]["user_data"] | |
match_score = calculate_job_match(job_description, user_data) | |
prompt = f"Generate a CV based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" | |
generated_cv = generate_text(prompt, max_length=300, min_length=100) | |
return f"Generated CV:\n\n{generated_cv}\n\nJob Match Score: {match_score:.2f}" | |
def generate_cover_letter(username, job_description): | |
if username not in users: | |
return "User not found" | |
user_data = users[username]["user_data"] | |
match_score = calculate_job_match(job_description, user_data) | |
prompt = f"Generate a cover letter based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" | |
cover_letter = generate_text(prompt, max_length=250, min_length=100) | |
return f"Generated Cover Letter:\n\n{cover_letter}\n\nJob Match Score: {match_score:.2f}" | |
def prepare_interview(username, job_description): | |
if username not in users: | |
return "User not found" | |
user_data = users[username]["user_data"] | |
match_score = calculate_job_match(job_description, user_data) | |
prompt = f"Generate 5 potential interview questions based on the following job description: {job_description}\nUser data: {user_data}\nJob match score: {match_score:.2f}" | |
interview_questions = generate_text(prompt, max_length=200, min_length=100) | |
return f"Potential Interview Questions:\n\n{interview_questions}\n\nJob Match Score: {match_score:.2f}" | |
with gr.Blocks() as demo: | |
gr.Markdown("# Advanced Personalized CV Generator") | |
with gr.Tab("Register"): | |
register_username = gr.Textbox(label="Username") | |
register_password = gr.Textbox(label="Password", type="password") | |
register_email = gr.Textbox(label="Email") | |
register_button = gr.Button("Register") | |
register_output = gr.Textbox(label="Output") | |
register_button.click(register, inputs=[register_username, register_password, register_email], outputs=register_output) | |
with gr.Tab("Login"): | |
login_username = gr.Textbox(label="Username") | |
login_password = gr.Textbox(label="Password", type="password") | |
login_button = gr.Button("Login") | |
login_output = gr.Textbox(label="Output") | |
login_button.click(login, inputs=[login_username, login_password], outputs=login_output) | |
with gr.Tab("Update Profile"): | |
update_username = gr.Textbox(label="Username") | |
update_email = gr.Textbox(label="Email") | |
update_user_data = gr.Textbox(label="Professional Information") | |
update_button = gr.Button("Update Profile") | |
update_output = gr.Textbox(label="Output") | |
update_button.click(update_profile, inputs=[update_username, update_email, update_user_data], outputs=update_output) | |
with gr.Tab("Generate CV"): | |
cv_username = gr.Textbox(label="Username") | |
cv_job_description = gr.Textbox(label="Job Description") | |
cv_button = gr.Button("Generate CV") | |
cv_output = gr.Textbox(label="Generated CV") | |
cv_button.click(generate_cv, inputs=[cv_username, cv_job_description], outputs=cv_output) | |
with gr.Tab("Generate Cover Letter"): | |
cl_username = gr.Textbox(label="Username") | |
cl_job_description = gr.Textbox(label="Job Description") | |
cl_button = gr.Button("Generate Cover Letter") | |
cl_output = gr.Textbox(label="Generated Cover Letter") | |
cl_button.click(generate_cover_letter, inputs=[cl_username, cl_job_description], outputs=cl_output) | |
with gr.Tab("Prepare for Interview"): | |
int_username = gr.Textbox(label="Username") | |
int_job_description = gr.Textbox(label="Job Description") | |
int_button = gr.Button("Generate Interview Questions") | |
int_output = gr.Textbox(label="Interview Questions") | |
int_button.click(prepare_interview, inputs=[int_username, int_job_description], outputs=int_output) | |
demo.launch() |