Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import numpy as np | |
import jax.numpy as jnp | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionPipeline | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
pipe, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"MuhammadHanif/stable-diffusion-v1-5-high-res", | |
dtype=jnp.bfloat16, | |
use_memory_efficient_attention=True | |
) | |
def infer(prompts, negative_prompts): | |
num_samples = 1 #jax.device_count() | |
rng = create_key(0) | |
rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
params=p_params, | |
height=1088, | |
width=1088, | |
prng_seed=rng, | |
num_inference_steps=50, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images | |
gr.Interface(infer, inputs=["text", "text"], outputs="gallery").launch() |