File size: 6,191 Bytes
644fb9b
 
f1def68
644fb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7c673
644fb9b
 
 
 
 
 
 
 
 
 
6ad87d2
644fb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5273c
644fb9b
 
9d5273c
644fb9b
ae4a55d
644fb9b
 
 
9d5273c
 
644fb9b
 
 
9d5273c
 
644fb9b
 
 
 
9d5273c
 
644fb9b
9d5273c
 
644fb9b
 
 
 
9d5273c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
644fb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1def68
644fb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4423e21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st
import time
import os
from autism_chatbot import *

class StreamHandler:
    def __init__(self, placeholder):
        self.text = ""
        self.text_container = placeholder

    def append_text(self, text: str) -> None:
        self.text += text
        self.text_container.markdown(self.text)

class StreamingGroqLLM(GroqLLM):
    stream_handler: Any = Field(None, description="Stream handler for real-time output")

    def _call(self, prompt: str, stop: Optional[List[str]] = None, **kwargs: Any) -> str:
        completion = self.client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],
            model=self.model_name,
            stream=True,
            **kwargs
        )
        
        collected_chunks = []
        collected_messages = []

        for chunk in completion:
            chunk_message = chunk.choices[0].delta.content
            if chunk_message is not None:
                collected_chunks.append(chunk_message)
                collected_messages.append(chunk_message)
                if self.stream_handler:
                    self.stream_handler.append_text(chunk_message)
                    time.sleep(0.05)

        return ''.join(collected_messages)

class StreamingAutismResearchBot(AutismResearchBot):
    def __init__(self, groq_api_key: str, stream_handler: StreamHandler, index_path: str = "index.faiss"):
        self.llm = StreamingGroqLLM(
            groq_api_key=groq_api_key,
            model_name="llama-3.3-70b-versatile",
            stream_handler=stream_handler
        )
        
        self.embeddings = HuggingFaceEmbeddings(
            model_name="pritamdeka/S-PubMedBert-MS-MARCO",
            model_kwargs={'device': 'cpu'}
        )
        self.db = FAISS.load_local("./", self.embeddings, allow_dangerous_deserialization=True)
        
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key="answer"
        )
        
        self.qa_chain = self._create_qa_chain()

def main():
    # Page configuration
    st.set_page_config(
        page_title="Autism Research Assistant",
        page_icon="🧩",
        layout="wide"
    )

    # Add custom CSS with background color
    st.markdown("""
        <style>
        /* Main background color */
        .stApp {
            background-color: #0000ff;  /* Light blue background */
            max-width: 1200px;
            margin: 0 auto;
        }
        
        /* Style for markdown text */
        .stMarkdown {
            font-size: 16px;
        }
        
        /* Chat message styling */
        .chat-message {
            padding: 1rem;
            border-radius: 0.5rem;
            margin-bottom: 1rem;
            background-color: white;  /* White background for messages */
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
        }
        
        /* Timestamp styling */
        .timestamp {
            font-size: 0.8em;
            color: #666;
        }
        
        /* Custom styling for chat containers */
        .stChatMessage {
            background-color: white;
            border-radius: 10px;
            padding: 10px;
            margin: 10px 0;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
        }
        
        /* Input box styling */
        .stTextInput>div>div>input {
            background-color: white;
            border-radius: 20px;
        }
        </style>
    """, unsafe_allow_html=True)

    # Header
    st.title("🧩 Autism Research Assistant")
    st.markdown("""
    Welcome to your AI-powered autism research assistant. I'm here to provide evidence-based 
    assessments and therapy recommendations based on scientific research.
    """)

    # Initialize session state
    if 'messages' not in st.session_state:
        st.session_state.messages = [
            {"role": "assistant", "content": "Hello! I'm your autism research assistant. How can I help you today?"}
        ]

    # Initialize bot
    if 'bot' not in st.session_state:
        st.session_state.stream_container = None
        st.session_state.bot = None

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(f"{message['content']}")
            st.caption(f"{time.strftime('%I:%M %p')}")

    # Chat input
    if prompt := st.chat_input("Type your message here..."):
        # Display user message
        with st.chat_message("user"):
            st.write(prompt)
            st.caption(f"{time.strftime('%I:%M %p')}")
        
        # Add to session state
        st.session_state.messages.append({"role": "user", "content": prompt})

        # Create a new chat message container for the assistant's response
        assistant_message = st.chat_message("assistant")
        with assistant_message:
            # Create a placeholder for the streaming text
            stream_placeholder = st.empty()
            
            # Initialize the bot with the new stream handler if not already initialized
            if st.session_state.bot is None:
                stream_handler = StreamHandler(stream_placeholder)
                st.session_state.bot = StreamingAutismResearchBot(
                    groq_api_key = os.environ.get("GROQ_API_KEY"),
                    stream_handler=stream_handler,
                )
            else:
                # Update the stream handler with the new placeholder
                st.session_state.bot.llm.stream_handler.text = ""
                st.session_state.bot.llm.stream_handler.text_container = stream_placeholder

            # Generate response
            response = st.session_state.bot.answer_question(prompt)
            
            # Clear the streaming placeholder and display the final message
            stream_placeholder.empty()
            st.write(response['answer'])
            st.caption(f"{time.strftime('%I:%M %p')}")
            
        # Add bot response to session state
        st.session_state.messages.append({"role": "assistant", "content": response['answer']})

if __name__ == "__main__":
    main()