File size: 7,612 Bytes
cab828c
 
 
 
 
 
 
053f83a
0878198
a48ce8c
0878198
 
 
e8225e5
c44ba13
43104b8
c44ba13
cab828c
0878198
 
 
 
d17776d
0878198
43104b8
0878198
4889640
 
 
c44ba13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0878198
 
dc677ac
0878198
4889640
0878198
 
 
43104b8
0878198
 
4889640
 
0878198
 
a05af10
43104b8
0878198
43104b8
0878198
 
 
43104b8
0878198
 
43104b8
 
0878198
 
43104b8
0878198
 
b7f5537
0878198
 
 
 
 
 
 
 
ffb2275
0878198
 
 
 
 
 
a3b9f5a
0878198
 
43104b8
ebdf05f
0878198
 
5a7e139
 
60bb5b0
5a7e139
60bb5b0
0878198
 
 
147203c
 
 
 
 
0878198
147203c
 
 
 
 
0878198
 
c91126d
0878198
 
 
 
4889640
 
0878198
 
4889640
0878198
 
 
4889640
0878198
a05af10
4889640
0878198
 
4889640
 
0878198
 
 
 
43104b8
0878198
 
 
43104b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0878198
43104b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
from gradio_rich_textbox import RichTextbox
from PIL import Image
from surya.ocr import run_ocr
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
# from lang_list import TEXT_SOURCE_LANGUAGE_NAMES
from gradio_client import Client
from dotenv import load_dotenv
import requests
from io import BytesIO
import cohere
import os
import re
import pandas as pd


title = "# Welcome to AyaTonic"
description = "Learn a New Language With Aya"
# Load environment variables
load_dotenv()
COHERE_API_KEY = os.getenv('CO_API_KEY')
SEAMLESSM4T = os.getenv('SEAMLESSM4T')
df = pd.read_csv("lang_list.csv")

inputlanguage = ""
producetext =  "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:"

# Regular expression patterns for each color
patterns = {
    "red": r'<span style="color: red;">(.*?)</span>',
    "blue": r'<span style="color: blue;">(.*?)</span>',
    "green": r'<span style="color: green;">(.*?)</span>',
}

# Dictionaries to hold the matches
matches = {
    "red": [],
    "blue": [],
    "green": [],
}
class TaggedPhraseExtractor:
    def __init__(self, text=''):
        self.text = text
        self.patterns = {}

    def set_text(self, text):
        """Set the text to search within."""
        self.text = text

    def add_pattern(self, color, pattern):
        """Add a new color and its associated pattern."""
        self.patterns[color] = pattern

    def extract_phrases(self):
        """Extract phrases for all colors and patterns added."""
        matches = {color: re.findall(pattern, self.text) for color, pattern in self.patterns.items()}
        return matches

    def print_phrases(self):
        """Extract phrases and print them."""
        matches = self.extract_phrases()
        for color, phrases in matches.items():
            print(f"Phrases with color {color}:")
            for phrase in phrases:
                print(f"- {phrase}")
            print()  
            
co = cohere.Client(COHERE_API_KEY)
audio_client = Client(SEAMLESSM4T)
client = Client(SEAMLESSM4T)

def process_audio_to_text(audio_path, inputlanguage="English"):
    """
    Convert audio input to text using the Gradio client.
    """
    audio_client = Client(SEAMLESSM4T)
    result = audio_client.predict(
        audio_path,
        inputlanguage,  
        inputlanguage,  
        api_name="/s2tt"
    )
    print("Audio Result: ", result)
    return result[0]

def process_text_to_audio(text, translatefrom, translateto):
    """
    Convert text input to audio using the Gradio client.
    """
    audio_client = Client(SEAMLESSM4T)
    result = audio_client.predict(
        text,
        translatefrom,  
        translateto, 
        api_name="/t2st"
    )
    return result[0] 

class OCRProcessor:
    def __init__(self, langs=["en"]): #add input language code
        self.langs = langs
        self.det_processor, self.det_model = load_det_processor(), load_det_model()
        self.rec_model, self.rec_processor = load_rec_model(), load_rec_processor()

    def process_image(self, image):
        """
        Process a PIL image and return the OCR text.
        """
        predictions = run_ocr([image], [self.langs], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0]  # Assuming the first item in predictions contains the desired text

    def process_pdf(self, pdf_path):
        """
        Process a PDF file and return the OCR text.
        """
        predictions = run_ocr([pdf_path], [self.langs], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0]  # Assuming the first item in predictions contains the desired text
    
def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ):
    ocr_processor = OCRProcessor()
    final_text = text
    if image is not None:
        ocr_prediction = ocr_processor.process_image(image)
        # gettig text from ocr object
        for idx in range(len((list(ocr_prediction)[0][1]))):
            final_text += " "
            final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
    if file is not None:
        if file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
            pil_image = Image.open(file)
            ocr_prediction = ocr_processor.process_image(pil_image)
            # gettig text from ocr object
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        elif file.name.lower().endswith('.pdf'):
            ocr_prediction = ocr_processor.process_pdf(file.name)
            # gettig text from ocr object
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        else:
            final_text += "\nUnsupported file type."
    print("OCR Text: ", final_text)
    if audio is not None:
        audio_text = process_audio_to_text(audio)
        final_text += "\n" + audio_text

    final_text_with_producetext = final_text + producetext

    response = co.generate(
        model='c4ai-aya',
        prompt=final_text_with_producetext,
        max_tokens=1024,
        temperature=0.5
    )
    # add graceful handling for errors (overflow)
    generated_text = response.generations[0].text
    print("Generated Text: ", generated_text)
    generated_text_with_format = generated_text + "\n" + formatinputstring
    response = co.generate(
        model='command-nightly',
        prompt=generated_text_with_format,
        max_tokens=4000,
        temperature=0.5
    )
    processed_text = response.generations[0].text

    audio_output = process_text_to_audio(processed_text, translateto, translateto)

    return processed_text, audio_output

def main():
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        
        with gr.Row():
            input_language = gr.Dropdown(choices=df["name"].to_list(), label="Your Native Language")
            target_language = gr.Dropdown(choices=df["name"].to_list(), label="Language To Learn")
        
        with gr.Accordion("Talk To 🌟AyaTonic"):
            with gr.Tab("🤙🏻Audio & Text"):
                audio_input = gr.Audio(sources="microphone", type="filepath", label="Mic Input")
                text_input = gr.Textbox(lines=2, label="Text Input")
            with gr.Tab("📸Image & File"):
                image_input = gr.Image(type="pil", label="Camera Input")
                file_input = gr.File(label="File Upload")
        
        process_button = gr.Button("🌟AyaTonic")
        
        processed_text_output = RichTextbox(label="Processed Text")
        audio_output = gr.Audio(label="Audio Output")
        
        process_button.click(
            fn=process_input,
            inputs=[image_input, file_input, audio_input, text_input, input_language, target_language],
            outputs=[processed_text_output, audio_output]
        )

if __name__ == "__main__":
    main()