File size: 14,241 Bytes
cab828c
 
 
 
 
 
 
5701b30
0878198
a48ce8c
0878198
0b2fb36
0878198
e8225e5
c44ba13
43104b8
971bee9
 
 
8cf21a2
3ef51fb
8cf21a2
cab828c
0878198
 
 
 
d17776d
0878198
43104b8
0c927b6
4889640
 
 
5701b30
c44ba13
 
 
 
 
 
 
 
 
 
 
 
 
5701b30
 
 
 
 
 
 
 
501d3ce
 
 
 
 
 
5701b30
2f0d9bf
5701b30
2f0d9bf
5701b30
2f0d9bf
 
 
 
5701b30
 
 
 
 
 
 
 
 
 
 
971bee9
 
 
be7cfd1
971bee9
 
be7cfd1
971bee9
 
 
 
 
 
 
 
 
 
 
be7cfd1
971bee9
 
 
 
 
 
 
c44ba13
 
 
6150c59
c44ba13
 
 
 
 
 
 
 
 
 
5701b30
 
 
 
 
0b2fb36
 
c44ba13
 
5701b30
c44ba13
5701b30
c44ba13
5701b30
 
 
 
c44ba13
5701b30
c44ba13
5701b30
0878198
 
 
43104b8
0878198
 
4889640
5701b30
0878198
 
a05af10
43104b8
0878198
568c287
0878198
 
ac0fcbc
0878198
ac0fcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568c287
 
 
 
 
099e1b4
568c287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0878198
be7cfd1
 
 
 
 
 
 
 
0878198
5701b30
 
be7cfd1
0878198
 
 
 
 
5701b30
 
0878198
 
 
 
 
5701b30
 
0878198
43104b8
5701b30
 
0878198
9af51bf
0878198
5a7e139
60bb5b0
5a7e139
60bb5b0
0878198
 
 
147203c
 
 
 
0878198
147203c
 
 
 
0878198
 
c91126d
0878198
971bee9
 
0878198
 
568c287
4889640
0878198
 
568c287
0878198
 
 
4889640
0878198
a05af10
3b901a6
0878198
 
4889640
 
0878198
 
 
 
43104b8
0b2fb36
 
0878198
0b2fb36
 
 
5701b30
6150c59
 
 
0b2fb36
 
 
6150c59
 
 
 
 
 
 
 
 
5701b30
0b2fb36
0878198
d886b33
6150c59
d886b33
 
f55f96c
 
 
b958361
76c7a79
 
 
d886b33
 
 
 
3f36ef5
b958361
 
2ffde05
 
b958361
 
2ffde05
 
b958361
2ffde05
 
 
d886b33
6150c59
ee8c60e
ac0fcbc
3f36ef5
 
d886b33
ac0fcbc
 
 
6150c59
57faa55
6150c59
ac0fcbc
6150c59
d886b33
ee8c60e
 
d06a6fd
d886b33
 
 
 
3f36ef5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import gradio as gr
from gradio_rich_textbox import RichTextbox
from PIL import Image
from surya.ocr import run_ocr
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes
from gradio_client import Client
from dotenv import load_dotenv
import requests
from io import BytesIO  
import cohere
import os
import re
import pandas as pd
import pydub
from pydub import AudioSegment
from pydub.utils import make_chunks
from pathlib import Path
import hashlib


title = "# Welcome to AyaTonic"
description = "Learn a New Language With Aya"
# Load environment variables
load_dotenv()
COHERE_API_KEY = os.getenv('CO_API_KEY')
SEAMLESSM4T = os.getenv('SEAMLESSM4T')
df = pd.read_csv("lang_list.csv")
choices = df["name"].to_list()
inputlanguage = ""
producetext =  "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:"
translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'"
# Regular expression patterns for each color
patterns = {
    "red": r'<span style="color: red;">(.*?)</span>',
    "blue": r'<span style="color: blue;">(.*?)</span>',
    "green": r'<span style="color: green;">(.*?)</span>',
}

# Dictionaries to hold the matches
matches = {
    "red": [],
    "blue": [],
    "green": [],
}

co = cohere.Client(COHERE_API_KEY)
audio_client = Client(SEAMLESSM4T)

def get_language_code(language_name):
    """
    Extracts the first two letters of the language code based on the language name.
    """
    try:
        code = df.loc[df['name'].str.lower() == language_name.lower(), 'code'].values[0]
        return code
    except IndexError:
        print(f"Language name '{language_name}' not found.")
        return None

def translate_text(text, inputlanguage, target_language):
    """
    Translates text.
    """
    # Ensure you format the instruction string within the function body
    instructions = translatetextinst.format(inputlanguage=inputlanguage)
    producetext_formatted = producetext.format(target_language=target_language)
    prompt = f"{text}{producetext_formatted}\n{instructions}"
    response = co.generate(
        model='c4ai-aya',
        prompt=prompt,
        max_tokens=2986,
        temperature=0.6,
        k=0,
        stop_sequences=[],
        return_likelihoods='NONE'
    )
    return response.generations[0].text

class LongAudioProcessor:
    def __init__(self, audio_client, api_key=None):
        self.client = audio_client
        self.process_audio_to_text = process_audio_to_text
        self.api_key = api_key

    def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000):
        """
        Process audio files longer than 29 seconds by chunking them into smaller segments.
        """
        audio = AudioSegment.from_file(audio_path)
        chunks = make_chunks(audio, chunk_length_ms)
        full_text = ""
        for i, chunk in enumerate(chunks):
            chunk_name = f"chunk{i}.wav"
            with open(chunk_name, 'wb') as file:
                chunk.export(file, format="wav")
            try:
                result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage)
                full_text += " " + result.strip()
            except Exception as e:
                print(f"Error processing {chunk_name}: {e}")
            finally:
                if os.path.exists(chunk_name):
                    os.remove(chunk_name)
        return full_text.strip()
class TaggedPhraseExtractor:
    def __init__(self, text=''):
        self.text = text
        self.patterns = patterns 

    def set_text(self, text):
        """Set the text to search within."""
        self.text = text

    def add_pattern(self, color, pattern):
        """Add a new color and its associated pattern."""
        self.patterns[color] = pattern

    def extract_phrases(self):
        """Extract phrases for all colors and patterns added, including the three longest phrases."""
        matches = {}
        for color, pattern in self.patterns.items():
            found_phrases = re.findall(pattern, self.text)
            sorted_phrases = sorted(found_phrases, key=len, reverse=True)
            matches[color] = sorted_phrases[:3]
        return matches

    def print_phrases(self):
        """Extract phrases and print them, including the three longest phrases."""
        matches = self.extract_phrases()
        for color, data in matches.items():
            print(f"Phrases with color {color}:")
            for phrase in data['all_phrases']:
                print(f"- {phrase}")
            print(f"\nThree longest phrases for color {color}:")
            for phrase in data['top_three_longest']:
                print(f"- {phrase}")
            print()
            
def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"):
    """
    Convert audio input to text using the Gradio client.
    """
    audio_client = Client(SEAMLESSM4T)
    result = audio_client.predict(
        audio_path,
        inputlanguage,  
        outputlanguage,  
        api_name="/s2tt"
    )
    print("Audio Result: ", result)
    return result[0]

def process_text_to_audio(text, translatefrom="English", translateto="English", filename_prefix="audio"):
    """
    Convert text input to audio using the Gradio client.
    Ensure the audio file is correctly saved and returned as a file path or binary data.
    """
    try:
        # Generate audio from text
        audio_response = audio_client.predict(
            text,
            translatefrom,  
            translateto, 
            api_name="/t2st"
        )
        if "error" in audio_response:
            raise ValueError(f"API Error: {audio_response['error']}")

        # Assuming audio_response[0] is a URL or file path to the generated audio
        audio_url = audio_response[0]
        response = requests.get(audio_url)
        audio_data = response.content  # This should be binary data

        # Generate a unique filename based on the text's hash
        text_hash = hashlib.md5(text.encode('utf-8')).hexdigest()
        filename = f"{filename_prefix}_{text_hash}.wav"
        # Save the audio data to a new file
        new_audio_file_path = save_audio_data_to_file(audio_data, filename=filename)

        # Return the path to the saved audio file
        return new_audio_file_path
    except Exception as e:
        print(f"Error processing text to audio: {e}")
        return None

def save_audio_data_to_file(audio_data, directory="audio_files", filename="output_audio.wav"):
    """
    Save audio data to a file and return the file path.
    """
    os.makedirs(directory, exist_ok=True)
    file_path = os.path.join(directory, filename)
    with open(file_path, 'wb') as file:
        file.write(audio_data)
    return file_path
# Ensure the function that reads the audio file checks if the path is a file
def read_audio_file(file_path):
    """
    Read and return the audio file content if the path is a file.
    """
    if os.path.isfile(file_path):
        with open(file_path, 'rb') as file:
            return file.read()
    else:
        raise ValueError(f"Expected a file path, got a directory: {file_path}")


def initialize_ocr_models():
    """
    Load the detection and recognition models along with their processors.
    """
    det_processor, det_model = load_det_processor(), load_det_model()
    rec_model, rec_processor = load_rec_model(), load_rec_processor()
    return det_processor, det_model, rec_model, rec_processor

class OCRProcessor:
    def __init__(self, lang_code=["en"]): 
        self.lang_code = lang_code
        self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models()

    def process_image(self, image):
        """
        Process a PIL image and return the OCR text.
        """
        predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0] 

    def process_pdf(self, pdf_path):
        """
        Process a PDF file and return the OCR text.
        """
        predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0]
    
def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ):
    lang_code = get_language_code(translatefrom)
    ocr_processor = OCRProcessor(lang_code)
    final_text = text
    print("Image :", image)
    if image is not None:
        ocr_prediction = ocr_processor.process_image(image)
        for idx in range(len((list(ocr_prediction)[0][1]))):
            final_text += " "
            final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
    if file is not None:
        if file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
            pil_image = Image.open(file)
            ocr_prediction = ocr_processor.process_image(pil_image)
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        elif file.name.lower().endswith('.pdf'):
            ocr_prediction = ocr_processor.process_pdf(file.name)
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        else:
            final_text += "\nUnsupported file type."
    print("OCR Text: ", final_text)
    if audio is not None:
        long_audio_processor = LongAudioProcessor(audio_client)
        audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto)
        final_text += "\n" + audio_text

    final_text_with_producetext = final_text + producetext.format(target_language=translateto)

    response = co.generate(
        model='c4ai-aya',
        prompt=final_text_with_producetext,
        max_tokens=1024,
        temperature=0.5
    )
    # add graceful handling for errors (overflow)
    generated_text = response.generations[0].text
    print("Generated Text: ", generated_text)
    generated_text_with_format = generated_text + "\n" + formatinputstring
    response = co.generate(
        model='command-nightly',
        prompt=generated_text_with_format,
        max_tokens=4000,
        temperature=0.5
    )
    processed_text = response.generations[0].text

    audio_output = process_text_to_audio(processed_text, translateto, translateto)
    extractor = TaggedPhraseExtractor(final_text)
    matches = extractor.extract_phrases()

    top_phrases = []
    for color, phrases in matches.items():
        top_phrases.extend(phrases)

    while len(top_phrases) < 3:
        top_phrases.append("")

    audio_outputs = []
    translations = []
    for phrase in top_phrases:
        if phrase:
            translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto)
            translations.append(translated_phrase)
            target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto)
            native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom)
            audio_outputs.append((target_audio, native_audio))
        else:
            translations.append("")
            audio_outputs.append(("", ""))

    return final_text, audio_output, top_phrases, translations, audio_outputs



# Define the inputs and outputs for the Gradio Interface
inputs = [
    
    gr.Dropdown(choices=choices, label="Your Native Language"),
    gr.Dropdown(choices=choices, label="Language To Learn"),
    gr.Audio(sources="microphone", type="filepath", label="Mic Input"),
    gr.Image(type="pil", label="Camera Input"),
    gr.Textbox(lines=2, label="Text Input"),
    gr.File(label="File Upload")
]

outputs = [
    RichTextbox(label="Processed Text"),
    gr.Audio(label="Audio"),
    gr.Textbox(label="Focus 1"),
    gr.Textbox(label="Translated Phrases 1"),
    gr.Audio(label="Audio Output (Native Language) 1"),
    gr.Audio(label="Audio Output (Target Language) 1"),
    gr.Textbox(label="Focus 2"),
    gr.Textbox(label="Translated Phrases 2"),
    gr.Audio(label="Audio Output (Native Language) 2"),
    gr.Audio(label="Audio Output (Target Language) 2"),
    gr.Textbox(label="Focus 3"),
    gr.Textbox(label="Translated Phrases 3"),
    gr.Audio(label="Audio Output (Native Language) 3"),
    gr.Audio(label="Audio Output (Target Language) 3")
]

def update_outputs(inputlanguage, target_language, audio, image, text, file):
    processed_text, audio_output_path, top_phrases, translations, audio_outputs = process_input(
        image=image, file=file, audio=audio, text=text, 
        translateto=target_language, translatefrom=inputlanguage 
    )

    audio_outputs_components = [(ao[0], ao[1]) for ao in audio_outputs]  
    output_tuple = (processed_text, audio_output_path) 
    for i in range(len(top_phrases)):
        output_tuple += (top_phrases[i], translations[i]) + audio_outputs_components[i]
    while len(output_tuple) < 14: 
        output_tuple += ("", "", "", "")
    return output_tuple

def interface_func(inputlanguage, target_language, audio, image, text, file):
    return update_outputs(inputlanguage, target_language, audio, image, text, file)

# Create the Gradio interface
iface = gr.Interface(fn=interface_func, inputs=inputs, outputs=outputs, title=title, description=description)

if __name__ == "__main__":
    iface.launch()