Spaces:
Runtime error
Runtime error
File size: 14,241 Bytes
cab828c 5701b30 0878198 a48ce8c 0878198 0b2fb36 0878198 e8225e5 c44ba13 43104b8 971bee9 8cf21a2 3ef51fb 8cf21a2 cab828c 0878198 d17776d 0878198 43104b8 0c927b6 4889640 5701b30 c44ba13 5701b30 501d3ce 5701b30 2f0d9bf 5701b30 2f0d9bf 5701b30 2f0d9bf 5701b30 971bee9 be7cfd1 971bee9 be7cfd1 971bee9 be7cfd1 971bee9 c44ba13 6150c59 c44ba13 5701b30 0b2fb36 c44ba13 5701b30 c44ba13 5701b30 c44ba13 5701b30 c44ba13 5701b30 c44ba13 5701b30 0878198 43104b8 0878198 4889640 5701b30 0878198 a05af10 43104b8 0878198 568c287 0878198 ac0fcbc 0878198 ac0fcbc 568c287 099e1b4 568c287 0878198 be7cfd1 0878198 5701b30 be7cfd1 0878198 5701b30 0878198 5701b30 0878198 43104b8 5701b30 0878198 9af51bf 0878198 5a7e139 60bb5b0 5a7e139 60bb5b0 0878198 147203c 0878198 147203c 0878198 c91126d 0878198 971bee9 0878198 568c287 4889640 0878198 568c287 0878198 4889640 0878198 a05af10 3b901a6 0878198 4889640 0878198 43104b8 0b2fb36 0878198 0b2fb36 5701b30 6150c59 0b2fb36 6150c59 5701b30 0b2fb36 0878198 d886b33 6150c59 d886b33 f55f96c b958361 76c7a79 d886b33 3f36ef5 b958361 2ffde05 b958361 2ffde05 b958361 2ffde05 d886b33 6150c59 ee8c60e ac0fcbc 3f36ef5 d886b33 ac0fcbc 6150c59 57faa55 6150c59 ac0fcbc 6150c59 d886b33 ee8c60e d06a6fd d886b33 3f36ef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import gradio as gr
from gradio_rich_textbox import RichTextbox
from PIL import Image
from surya.ocr import run_ocr
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes
from gradio_client import Client
from dotenv import load_dotenv
import requests
from io import BytesIO
import cohere
import os
import re
import pandas as pd
import pydub
from pydub import AudioSegment
from pydub.utils import make_chunks
from pathlib import Path
import hashlib
title = "# Welcome to AyaTonic"
description = "Learn a New Language With Aya"
# Load environment variables
load_dotenv()
COHERE_API_KEY = os.getenv('CO_API_KEY')
SEAMLESSM4T = os.getenv('SEAMLESSM4T')
df = pd.read_csv("lang_list.csv")
choices = df["name"].to_list()
inputlanguage = ""
producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:"
translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'"
# Regular expression patterns for each color
patterns = {
"red": r'<span style="color: red;">(.*?)</span>',
"blue": r'<span style="color: blue;">(.*?)</span>',
"green": r'<span style="color: green;">(.*?)</span>',
}
# Dictionaries to hold the matches
matches = {
"red": [],
"blue": [],
"green": [],
}
co = cohere.Client(COHERE_API_KEY)
audio_client = Client(SEAMLESSM4T)
def get_language_code(language_name):
"""
Extracts the first two letters of the language code based on the language name.
"""
try:
code = df.loc[df['name'].str.lower() == language_name.lower(), 'code'].values[0]
return code
except IndexError:
print(f"Language name '{language_name}' not found.")
return None
def translate_text(text, inputlanguage, target_language):
"""
Translates text.
"""
# Ensure you format the instruction string within the function body
instructions = translatetextinst.format(inputlanguage=inputlanguage)
producetext_formatted = producetext.format(target_language=target_language)
prompt = f"{text}{producetext_formatted}\n{instructions}"
response = co.generate(
model='c4ai-aya',
prompt=prompt,
max_tokens=2986,
temperature=0.6,
k=0,
stop_sequences=[],
return_likelihoods='NONE'
)
return response.generations[0].text
class LongAudioProcessor:
def __init__(self, audio_client, api_key=None):
self.client = audio_client
self.process_audio_to_text = process_audio_to_text
self.api_key = api_key
def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000):
"""
Process audio files longer than 29 seconds by chunking them into smaller segments.
"""
audio = AudioSegment.from_file(audio_path)
chunks = make_chunks(audio, chunk_length_ms)
full_text = ""
for i, chunk in enumerate(chunks):
chunk_name = f"chunk{i}.wav"
with open(chunk_name, 'wb') as file:
chunk.export(file, format="wav")
try:
result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage)
full_text += " " + result.strip()
except Exception as e:
print(f"Error processing {chunk_name}: {e}")
finally:
if os.path.exists(chunk_name):
os.remove(chunk_name)
return full_text.strip()
class TaggedPhraseExtractor:
def __init__(self, text=''):
self.text = text
self.patterns = patterns
def set_text(self, text):
"""Set the text to search within."""
self.text = text
def add_pattern(self, color, pattern):
"""Add a new color and its associated pattern."""
self.patterns[color] = pattern
def extract_phrases(self):
"""Extract phrases for all colors and patterns added, including the three longest phrases."""
matches = {}
for color, pattern in self.patterns.items():
found_phrases = re.findall(pattern, self.text)
sorted_phrases = sorted(found_phrases, key=len, reverse=True)
matches[color] = sorted_phrases[:3]
return matches
def print_phrases(self):
"""Extract phrases and print them, including the three longest phrases."""
matches = self.extract_phrases()
for color, data in matches.items():
print(f"Phrases with color {color}:")
for phrase in data['all_phrases']:
print(f"- {phrase}")
print(f"\nThree longest phrases for color {color}:")
for phrase in data['top_three_longest']:
print(f"- {phrase}")
print()
def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"):
"""
Convert audio input to text using the Gradio client.
"""
audio_client = Client(SEAMLESSM4T)
result = audio_client.predict(
audio_path,
inputlanguage,
outputlanguage,
api_name="/s2tt"
)
print("Audio Result: ", result)
return result[0]
def process_text_to_audio(text, translatefrom="English", translateto="English", filename_prefix="audio"):
"""
Convert text input to audio using the Gradio client.
Ensure the audio file is correctly saved and returned as a file path or binary data.
"""
try:
# Generate audio from text
audio_response = audio_client.predict(
text,
translatefrom,
translateto,
api_name="/t2st"
)
if "error" in audio_response:
raise ValueError(f"API Error: {audio_response['error']}")
# Assuming audio_response[0] is a URL or file path to the generated audio
audio_url = audio_response[0]
response = requests.get(audio_url)
audio_data = response.content # This should be binary data
# Generate a unique filename based on the text's hash
text_hash = hashlib.md5(text.encode('utf-8')).hexdigest()
filename = f"{filename_prefix}_{text_hash}.wav"
# Save the audio data to a new file
new_audio_file_path = save_audio_data_to_file(audio_data, filename=filename)
# Return the path to the saved audio file
return new_audio_file_path
except Exception as e:
print(f"Error processing text to audio: {e}")
return None
def save_audio_data_to_file(audio_data, directory="audio_files", filename="output_audio.wav"):
"""
Save audio data to a file and return the file path.
"""
os.makedirs(directory, exist_ok=True)
file_path = os.path.join(directory, filename)
with open(file_path, 'wb') as file:
file.write(audio_data)
return file_path
# Ensure the function that reads the audio file checks if the path is a file
def read_audio_file(file_path):
"""
Read and return the audio file content if the path is a file.
"""
if os.path.isfile(file_path):
with open(file_path, 'rb') as file:
return file.read()
else:
raise ValueError(f"Expected a file path, got a directory: {file_path}")
def initialize_ocr_models():
"""
Load the detection and recognition models along with their processors.
"""
det_processor, det_model = load_det_processor(), load_det_model()
rec_model, rec_processor = load_rec_model(), load_rec_processor()
return det_processor, det_model, rec_model, rec_processor
class OCRProcessor:
def __init__(self, lang_code=["en"]):
self.lang_code = lang_code
self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models()
def process_image(self, image):
"""
Process a PIL image and return the OCR text.
"""
predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
return predictions[0]
def process_pdf(self, pdf_path):
"""
Process a PDF file and return the OCR text.
"""
predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
return predictions[0]
def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ):
lang_code = get_language_code(translatefrom)
ocr_processor = OCRProcessor(lang_code)
final_text = text
print("Image :", image)
if image is not None:
ocr_prediction = ocr_processor.process_image(image)
for idx in range(len((list(ocr_prediction)[0][1]))):
final_text += " "
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
if file is not None:
if file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
pil_image = Image.open(file)
ocr_prediction = ocr_processor.process_image(pil_image)
for idx in range(len((list(ocr_prediction)[0][1]))):
final_text += " "
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
elif file.name.lower().endswith('.pdf'):
ocr_prediction = ocr_processor.process_pdf(file.name)
for idx in range(len((list(ocr_prediction)[0][1]))):
final_text += " "
final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
else:
final_text += "\nUnsupported file type."
print("OCR Text: ", final_text)
if audio is not None:
long_audio_processor = LongAudioProcessor(audio_client)
audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto)
final_text += "\n" + audio_text
final_text_with_producetext = final_text + producetext.format(target_language=translateto)
response = co.generate(
model='c4ai-aya',
prompt=final_text_with_producetext,
max_tokens=1024,
temperature=0.5
)
# add graceful handling for errors (overflow)
generated_text = response.generations[0].text
print("Generated Text: ", generated_text)
generated_text_with_format = generated_text + "\n" + formatinputstring
response = co.generate(
model='command-nightly',
prompt=generated_text_with_format,
max_tokens=4000,
temperature=0.5
)
processed_text = response.generations[0].text
audio_output = process_text_to_audio(processed_text, translateto, translateto)
extractor = TaggedPhraseExtractor(final_text)
matches = extractor.extract_phrases()
top_phrases = []
for color, phrases in matches.items():
top_phrases.extend(phrases)
while len(top_phrases) < 3:
top_phrases.append("")
audio_outputs = []
translations = []
for phrase in top_phrases:
if phrase:
translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto)
translations.append(translated_phrase)
target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto)
native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom)
audio_outputs.append((target_audio, native_audio))
else:
translations.append("")
audio_outputs.append(("", ""))
return final_text, audio_output, top_phrases, translations, audio_outputs
# Define the inputs and outputs for the Gradio Interface
inputs = [
gr.Dropdown(choices=choices, label="Your Native Language"),
gr.Dropdown(choices=choices, label="Language To Learn"),
gr.Audio(sources="microphone", type="filepath", label="Mic Input"),
gr.Image(type="pil", label="Camera Input"),
gr.Textbox(lines=2, label="Text Input"),
gr.File(label="File Upload")
]
outputs = [
RichTextbox(label="Processed Text"),
gr.Audio(label="Audio"),
gr.Textbox(label="Focus 1"),
gr.Textbox(label="Translated Phrases 1"),
gr.Audio(label="Audio Output (Native Language) 1"),
gr.Audio(label="Audio Output (Target Language) 1"),
gr.Textbox(label="Focus 2"),
gr.Textbox(label="Translated Phrases 2"),
gr.Audio(label="Audio Output (Native Language) 2"),
gr.Audio(label="Audio Output (Target Language) 2"),
gr.Textbox(label="Focus 3"),
gr.Textbox(label="Translated Phrases 3"),
gr.Audio(label="Audio Output (Native Language) 3"),
gr.Audio(label="Audio Output (Target Language) 3")
]
def update_outputs(inputlanguage, target_language, audio, image, text, file):
processed_text, audio_output_path, top_phrases, translations, audio_outputs = process_input(
image=image, file=file, audio=audio, text=text,
translateto=target_language, translatefrom=inputlanguage
)
audio_outputs_components = [(ao[0], ao[1]) for ao in audio_outputs]
output_tuple = (processed_text, audio_output_path)
for i in range(len(top_phrases)):
output_tuple += (top_phrases[i], translations[i]) + audio_outputs_components[i]
while len(output_tuple) < 14:
output_tuple += ("", "", "", "")
return output_tuple
def interface_func(inputlanguage, target_language, audio, image, text, file):
return update_outputs(inputlanguage, target_language, audio, image, text, file)
# Create the Gradio interface
iface = gr.Interface(fn=interface_func, inputs=inputs, outputs=outputs, title=title, description=description)
if __name__ == "__main__":
iface.launch() |