File size: 13,108 Bytes
cab828c
 
 
 
 
 
 
5701b30
0878198
a48ce8c
0878198
0b2fb36
0878198
e8225e5
c44ba13
43104b8
971bee9
 
 
cab828c
0878198
 
 
 
d17776d
0878198
43104b8
0c927b6
4889640
 
 
5701b30
c44ba13
 
 
 
 
 
 
 
 
 
 
 
 
5701b30
 
 
 
 
 
 
 
 
 
 
 
 
0b2fb36
5701b30
 
 
 
 
 
 
 
 
 
 
 
 
971bee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c44ba13
 
 
 
 
 
 
 
 
 
 
 
 
 
5701b30
 
 
 
 
 
0b2fb36
 
c44ba13
 
5701b30
c44ba13
5701b30
c44ba13
5701b30
 
 
 
c44ba13
5701b30
c44ba13
5701b30
0878198
 
 
43104b8
0878198
 
4889640
5701b30
0878198
 
a05af10
43104b8
0878198
682564f
0878198
 
 
43104b8
0878198
 
43104b8
 
0878198
 
43104b8
0878198
 
5701b30
 
0878198
 
 
 
 
 
 
5701b30
 
0878198
 
 
 
 
5701b30
 
0878198
43104b8
5701b30
 
0878198
 
5a7e139
60bb5b0
5a7e139
60bb5b0
0878198
 
 
147203c
 
 
 
0878198
147203c
 
 
 
0878198
 
c91126d
0878198
971bee9
 
0878198
 
4889640
 
0878198
 
4889640
0878198
 
 
4889640
0878198
a05af10
4889640
0878198
 
4889640
 
0878198
 
 
 
43104b8
0b2fb36
 
 
 
 
0878198
0b2fb36
 
 
5701b30
0b2fb36
 
 
 
 
 
 
 
5701b30
0b2fb36
0878198
43104b8
 
 
 
 
 
0c927b6
 
43104b8
 
 
 
 
 
 
 
 
 
 
2b22e1b
5701b30
 
 
 
 
 
 
 
 
 
 
 
 
 
0b2fb36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43104b8
5701b30
43104b8
0b2fb36
 
 
 
 
 
 
 
 
43104b8
0878198
43104b8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import gradio as gr
from gradio_rich_textbox import RichTextbox
from PIL import Image
from surya.ocr import run_ocr
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes
from gradio_client import Client
from dotenv import load_dotenv
import requests
from io import BytesIO  
import cohere
import os
import re
import pandas as pd
import pydub
from pydub import AudioSegment
from pydub.utils import make_chunks

title = "# Welcome to AyaTonic"
description = "Learn a New Language With Aya"
# Load environment variables
load_dotenv()
COHERE_API_KEY = os.getenv('CO_API_KEY')
SEAMLESSM4T = os.getenv('SEAMLESSM4T')
df = pd.read_csv("lang_list.csv")
choices = df["name"].to_list()
inputlanguage = ""
producetext =  "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
formatinputstring = "\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:"
translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'"
# Regular expression patterns for each color
patterns = {
    "red": r'<span style="color: red;">(.*?)</span>',
    "blue": r'<span style="color: blue;">(.*?)</span>',
    "green": r'<span style="color: green;">(.*?)</span>',
}

# Dictionaries to hold the matches
matches = {
    "red": [],
    "blue": [],
    "green": [],
}

co = cohere.Client(COHERE_API_KEY)
audio_client = Client(SEAMLESSM4T)

def get_language_code(language_name):
    """
    Extracts the first two letters of the language code based on the language name.
    """
    code = df.loc[df['name'] == language_name, 'code'].values[0]
    return code[:2]

def translate_text(text, instructions=translatetextinst):
    """
    translates text.
    """
    prompt = f"{text}{instructions}"
    response = co.generate(
        model='c4ai-aya',
        prompt=prompt,
        max_tokens=2986,
        temperature=0.6,
        k=0,
        stop_sequences=[],
        return_likelihoods='NONE'
    )
    return response.generations[0].text

class LongAudioProcessor:
    def __init__(self, audio_client, api_key=None):
        self.client = audio_client
        self.api_key = api_key

    def process_long_audio(self, audio_path, chunk_length_ms=20000):
        """
        Process audio files longer than 29 seconds by chunking them into smaller segments.
        """
        audio = AudioSegment.from_file(audio_path)
        chunks = make_chunks(audio, chunk_length_ms)
        full_text = ""
        for i, chunk in enumerate(chunks):
            chunk_name = f"chunk{i}.wav"
            with open(chunk_name, 'wb') as file:
                chunk.export(file, format="wav")
            try:
                result = self.process_audio_to_text(chunk_name)
                full_text += " " + result.strip()
            except Exception as e:
                print(f"Error processing {chunk_name}: {e}")
            finally:
                if os.path.exists(chunk_name):
                    os.remove(chunk_name)
        return full_text.strip()
class TaggedPhraseExtractor:
    def __init__(self, text=''):
        self.text = text
        self.patterns = {}

    def set_text(self, text):
        """Set the text to search within."""
        self.text = text

    def add_pattern(self, color, pattern):
        """Add a new color and its associated pattern."""
        self.patterns[color] = pattern

    def extract_phrases(self):
        """Extract phrases for all colors and patterns added, including the three longest phrases."""
        matches = {}
        three_matches = {}
        for color, pattern in self.patterns.items():
            found_phrases = re.findall(pattern, self.text)
            sorted_phrases = sorted(found_phrases, key=len, reverse=True)
            matches[color] = sorted_phrases[:3]
        return matches

    def print_phrases(self):
        """Extract phrases and print them, including the three longest phrases."""
        matches = self.extract_phrases()
        for color, data in matches.items():
            print(f"Phrases with color {color}:")
            for phrase in data['all_phrases']:
                print(f"- {phrase}")
            print(f"\nThree longest phrases for color {color}:")
            for phrase in data['top_three_longest']:
                print(f"- {phrase}")
            print()
            
def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"):
    """
    Convert audio input to text using the Gradio client.
    """
    audio_client = Client(SEAMLESSM4T)
    result = audio_client.predict(
        audio_path,
        inputlanguage,  
        outputlanguage,  
        api_name="/s2tt"
    )
    print("Audio Result: ", result)
    return result[0]

def process_text_to_audio(text, translatefrom="English", translateto="English"):
    """
    Convert text input to audio using the Gradio client.
    """
    audio_client = Client(SEAMLESSM4T)
    result = audio_client.predict(
        text,
        translatefrom,  
        translateto, 
        api_name="/t2st"
    )
    return result[0] 

class OCRProcessor:
    def __init__(self, lang_code=["en"]): 
        self.lang_code = lang_code
        self.det_processor, self.det_model = load_det_processor(), load_det_model()
        self.rec_model, self.rec_processor = load_rec_model(), load_rec_processor()

    def process_image(self, image):
        """
        Process a PIL image and return the OCR text.
        """
        predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0] 

    def process_pdf(self, pdf_path):
        """
        Process a PDF file and return the OCR text.
        """
        predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
        return predictions[0]
    
def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ):
    lang_code = get_language_code(translatefrom)
    ocr_processor = OCRProcessor(lang_code)
    final_text = text
    if image is not None:
        ocr_prediction = ocr_processor.process_image(image)
        for idx in range(len((list(ocr_prediction)[0][1]))):
            final_text += " "
            final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
    if file is not None:
        if file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
            pil_image = Image.open(file)
            ocr_prediction = ocr_processor.process_image(pil_image)
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        elif file.name.lower().endswith('.pdf'):
            ocr_prediction = ocr_processor.process_pdf(file.name)
            for idx in range(len((list(ocr_prediction)[0][1]))):
                final_text += " "
                final_text += list((list(ocr_prediction)[0][1])[idx])[1][1]
        else:
            final_text += "\nUnsupported file type."
    print("OCR Text: ", final_text)
    if audio is not None:
        long_audio_processor = LongAudioProcessor(audio_client)
        audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto)
        final_text += "\n" + audio_text

    final_text_with_producetext = final_text + producetext

    response = co.generate(
        model='c4ai-aya',
        prompt=final_text_with_producetext,
        max_tokens=1024,
        temperature=0.5
    )
    # add graceful handling for errors (overflow)
    generated_text = response.generations[0].text
    print("Generated Text: ", generated_text)
    generated_text_with_format = generated_text + "\n" + formatinputstring
    response = co.generate(
        model='command-nightly',
        prompt=generated_text_with_format,
        max_tokens=4000,
        temperature=0.5
    )
    processed_text = response.generations[0].text

    audio_output = process_text_to_audio(processed_text, translateto, translateto)
    extractor = TaggedPhraseExtractor(final_text)
    extractor.add_pattern("red", patterns["red"])
    extractor.add_pattern("blue", patterns["blue"])
    extractor.add_pattern("green", patterns["green"])
    matches = extractor.extract_phrases()

    top_phrases = []
    for color, phrases in matches.items():
        top_phrases.extend(phrases)

    audio_outputs = []
    translations = []
    for phrase in top_phrases:
        translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto)
        translations.append(translated_phrase)
        target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto)
        native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom)
        audio_outputs.append((target_audio, native_audio))

    return final_text, audio_output, top_phrases, translations, audio_outputs

def main():
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        
        with gr.Row():
            input_language = gr.Dropdown(choices=choices, label="Your Native Language")
            target_language = gr.Dropdown(choices=choices, label="Language To Learn")
        
        with gr.Accordion("Talk To 🌟AyaTonic"):
            with gr.Tab("🤙🏻Audio & Text"):
                audio_input = gr.Audio(sources="microphone", type="filepath", label="Mic Input")
                text_input = gr.Textbox(lines=2, label="Text Input")
            with gr.Tab("📸Image & File"):
                image_input = gr.Image(type="pil", label="Camera Input")
                file_input = gr.File(label="File Upload")
        
        process_button = gr.Button("🌟AyaTonic")
        
        processed_text_output = RichTextbox(label="Processed Text")
        longest_phrases_1 = gr.Textbox(label="Focus")
        translated_phrases_output_1 = gr.Textbox(label="Translated Phrases")
        audio_output_native_phrase_1 = gr.Audio(label="Audio Output (Native Language)")
        audio_output_target_phrase_1 = gr.Audio(label="Audio Output (Target Language)")
        longest_phrases_2 = gr.Textbox(label="Focus")
        translated_phrases_output_2 = gr.Textbox(label="Translated Phrases")
        audio_output_native_phrase_2 = gr.Audio(label="Audio Output (Native Language)")
        audio_output_target_phrase_2 = gr.Audio(label="Audio Output (Target Language)")
        longest_phrases_3 = gr.Textbox(label="Focus")
        translated_phrases_output_3 = gr.Textbox(label="Translated Phrases")
        audio_output_native_phrase_3 = gr.Audio(label="Audio Output (Native Language)")
        audio_output_target_phrase_3 = gr.Audio(label="Audio Output (Target Language)")
        
        def update_outputs(image, file, audio, text, input_language, target_language):
            final_text, top_phrases, translations, audio_outputs = process_input(
                image=image, file=file, audio=audio, text=text, 
                translatefrom=input_language, translateto=target_language
            )

            processed_text_output = final_text
            audio_output_native_phrases = [native for _, native in audio_outputs]
            audio_output_target_phrases = [target for target, _ in audio_outputs]

            longest_phrases_outputs = top_phrases[:3]
            translated_phrases_outputs = translations[:3]
            audio_outputs_native = audio_output_native_phrases[:3]
            audio_outputs_target = audio_output_target_phrases[:3]

            return (
                processed_text_output, 
                *audio_outputs_native, 
                *audio_outputs_target, 
                *longest_phrases_outputs, 
                *translated_phrases_outputs
            )
       
        process_button.click(
            fn=update_outputs,
            inputs=[image_input, file_input, audio_input, text_input, input_language, target_language],
            outputs=[
                processed_text_output, 
                audio_output_native_phrase_1, audio_output_target_phrase_1, 
                audio_output_native_phrase_2, audio_output_target_phrase_2, 
                audio_output_native_phrase_3, audio_output_target_phrase_3, 
                longest_phrases_1, translated_phrases_output_1, 
                longest_phrases_2, translated_phrases_output_2, 
                longest_phrases_3, translated_phrases_output_3
            ]
        )

if __name__ == "__main__":
    main()