File size: 34,793 Bytes
f9bd6e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Auto Generated Agent Chat: Collaborative Task Solving with Multiple Agents and Human Users\n",
"\n",
"AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation. Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
"\n",
"In this notebook, we demonstrate an application involving multiple agents and human users to work together and accomplish a task. `AssistantAgent` is an LLM-based agent that can write Python code (in a Python coding block) for a user to execute for a given task. `UserProxyAgent` is an agent which serves as a proxy for a user to execute the code written by `AssistantAgent`. We create multiple `UserProxyAgent` instances which can represent different human users.\n",
"\n",
"## Requirements\n",
"\n",
"AutoGen requires `Python>=3.8`. To run this notebook example, please install:\n",
"```bash\n",
"pip install pyautogen\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-02-13T23:40:52.317406Z",
"iopub.status.busy": "2023-02-13T23:40:52.316561Z",
"iopub.status.idle": "2023-02-13T23:40:52.321193Z",
"shell.execute_reply": "2023-02-13T23:40:52.320628Z"
}
},
"outputs": [],
"source": [
"# %pip install pyautogen~=0.1.1"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set your API Endpoint\n",
"\n",
"The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n",
"\n",
"It first looks for an environment variable of a specified name (\"OAI_CONFIG_LIST\" in this example) which needs to be a valid json string. If that variable is not found, it then looks for a json file with the same name. It filters the configs by models (you can filter by other keys as well).\n",
"\n",
"The json looks like the following:\n",
"```json\n",
"[\n",
" {\n",
" \"model\": \"gpt-4\",\n",
" \"api_key\": \"<your OpenAI API key here>\"\n",
" },\n",
" {\n",
" \"model\": \"gpt-4\",\n",
" \"api_key\": \"<your Azure OpenAI API key here>\",\n",
" \"api_base\": \"<your Azure OpenAI API base here>\",\n",
" \"api_type\": \"azure\",\n",
" \"api_version\": \"2023-07-01-preview\"\n",
" },\n",
" {\n",
" \"model\": \"gpt-4-32k\",\n",
" \"api_key\": \"<your Azure OpenAI API key here>\",\n",
" \"api_base\": \"<your Azure OpenAI API base here>\",\n",
" \"api_type\": \"azure\",\n",
" \"api_version\": \"2023-07-01-preview\"\n",
" }\n",
"]\n",
"```\n",
"\n",
"If you open this notebook in colab, you can upload your files by clicking the file icon on the left panel and then choose \"upload file\" icon.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import autogen\n",
"\n",
"config_list = autogen.config_list_from_json(\n",
" \"OAI_CONFIG_LIST\",\n",
" filter_dict={\n",
" \"model\": [\"gpt-4\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n",
" },\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Construct Agents\n",
"\n",
"We define `ask_expert` function to start a conversation between two agents and return a summary of the result. We construct an assistant agent named \"assistant_for_expert\" and a user proxy agent named \"expert\". We specify `human_input_mode` as \"ALWAYS\" in the user proxy agent, which will always ask for feedback from the expert user."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def ask_expert(message):\n",
" assistant_for_expert = autogen.AssistantAgent(\n",
" name=\"assistant_for_expert\",\n",
" llm_config={\n",
" \"temperature\": 0,\n",
" \"config_list\": config_list,\n",
" },\n",
" )\n",
" expert = autogen.UserProxyAgent(\n",
" name=\"expert\",\n",
" human_input_mode=\"ALWAYS\",\n",
" code_execution_config={\"work_dir\": \"expert\"},\n",
" )\n",
"\n",
" expert.initiate_chat(assistant_for_expert, message=message)\n",
" expert.stop_reply_at_receive(assistant_for_expert)\n",
" # expert.human_input_mode, expert.max_consecutive_auto_reply = \"NEVER\", 0\n",
" # final message sent from the expert\n",
" expert.send(\"summarize the solution and explain the answer in an easy-to-understand way\", assistant_for_expert)\n",
" # return the last message the expert received\n",
" return expert.last_message()[\"content\"]\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We construct another assistant agent named \"assistant_for_student\" and a user proxy agent named \"student\". We specify `human_input_mode` as \"TERMINATE\" in the user proxy agent, which will ask for feedback when it receives a \"TERMINATE\" signal from the assistant agent. We set the `functions` in `AssistantAgent` and `function_map` in `UserProxyAgent` to use the created `ask_expert` function.\n",
"\n",
"For simplicity, the `ask_expert` function is defined to run locally. For real applications, the function should run remotely to interact with an expert user."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"assistant_for_student = autogen.AssistantAgent(\n",
" name=\"assistant_for_student\",\n",
" system_message=\"You are a helpful assistant. Reply TERMINATE when the task is done.\",\n",
" llm_config={\n",
" \"request_timeout\": 600,\n",
" \"seed\": 42,\n",
" # Excluding azure openai endpoints from the config list.\n",
" # Change to `exclude=\"openai\"` to exclude openai endpoints, or remove the `exclude` argument to include both.\n",
" \"config_list\": autogen.config_list_openai_aoai(exclude=\"aoai\"),\n",
" \"model\": \"gpt-4-0613\", # make sure the endpoint you use supports the model\n",
" \"temperature\": 0,\n",
" \"functions\": [\n",
" {\n",
" \"name\": \"ask_expert\",\n",
" \"description\": \"ask expert when you can't solve the problem satisfactorily.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"message\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"question to ask expert. Make sure the question include enough context, such as the code and the execution result. The expert does not know the conversation between you and the user, unless you share the conversation with the expert.\",\n",
" },\n",
" },\n",
" \"required\": [\"message\"],\n",
" },\n",
" }\n",
" ],\n",
" }\n",
")\n",
"\n",
"student = autogen.UserProxyAgent(\n",
" name=\"student\",\n",
" human_input_mode=\"TERMINATE\",\n",
" max_consecutive_auto_reply=10,\n",
" code_execution_config={\"work_dir\": \"student\"},\n",
" function_map={\"ask_expert\": ask_expert},\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Perform a task\n",
"\n",
"We invoke the `initiate_chat()` method of the student proxy agent to start the conversation. When you run the cell below, you will be prompted to provide feedback after the assistant agent sends a \"TERMINATE\" signal in the end of the message. If you don't provide any feedback (by pressing Enter directly), the conversation will finish. Before the \"TERMINATE\" signal, the student proxy agent will try to execute the code suggested by the assistant agent on behalf of the user."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
"\n",
"Find $a + b + c$, given that $x+y \\neq -1$ and \n",
"\\begin{align}\n",
"\tax + by + c & = x + 7,\\\n",
"\ta + bx + cy & = 2x + 6y,\\\n",
"\tay + b + cx & = 4x + y.\n",
"\\end{align}.\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_student\u001b[0m (to student):\n",
"\n",
"To find the values of $a$, $b$, and $c$, we need to solve the system of equations. However, the system of equations you provided seems to be incomplete or incorrect. The equations are not properly formatted, and it's unclear how $x$ and $y$ are related to $a$, $b$, and $c$. \n",
"\n",
"Could you please provide the correct system of equations?\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_student\u001b[0m (to student):\n",
"\n",
"\u001b[32m***** Suggested function Call: ask_expert *****\u001b[0m\n",
"Arguments: \n",
"{\n",
" \"message\": \"The user provided a system of equations and asked to find $a + b + c$, given that $x+y \\\\neq -1$ and \\n\\\\begin{align}\\n\\tax + by + c & = x + 7,\\\\\\n\\ta + bx + cy & = 2x + 6y,\\\\\\n\\tay + b + cx & = 4x + y.\\n\\\\end{align}. However, the system of equations seems to be incomplete or incorrectly formatted. How should I proceed?\"\n",
"}\n",
"\u001b[32m***********************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[35m\n",
">>>>>>>> EXECUTING FUNCTION ask_expert...\u001b[0m\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"The user provided a system of equations and asked to find $a + b + c$, given that $x+y \\neq -1$ and \n",
"\\begin{align}\n",
"\tax + by + c & = x + 7,\\\n",
"\ta + bx + cy & = 2x + 6y,\\\n",
"\tay + b + cx & = 4x + y.\n",
"\\end{align}. However, the system of equations seems to be incomplete or incorrectly formatted. How should I proceed?\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"To proceed, we can first try to solve the given system of equations and see if we can find a unique solution for $a$, $b$, and $c$. If we can't find a unique solution, we can then determine if there's any additional information needed or if the system is indeed incomplete or incorrectly formatted.\n",
"\n",
"Let's solve the given system of equations using Python's SymPy library.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"make sure you simplify the answer\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"Sure, I will simplify the answer. Let's solve the given system of equations using Python's SymPy library and simplify the result.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"First, let's install the SymPy library if you haven't already. Execute the following command to install it:\n",
"\n",
"```sh\n",
"pip install sympy\n",
"```\n",
"\n",
"Now, let's solve the given system of equations using Python's SymPy library and simplify the result.\n",
"\n",
"```python\n",
"from sympy import symbols, Eq, solve, simplify\n",
"\n",
"a, b, c, x, y = symbols('a b c x y')\n",
"\n",
"eq1 = Eq(a * x + b * y + c, x + 7)\n",
"eq2 = Eq(a + b * x + c * y, 2 * x + 6 * y)\n",
"eq3 = Eq(a * y + b + c * x, 4 * x + y)\n",
"\n",
"solutions = solve((eq1, eq2, eq3), (a, b, c))\n",
"\n",
"simplified_solutions = {key: simplify(value) for key, value in solutions.items()}\n",
"a_val, b_val, c_val = simplified_solutions[a], simplified_solutions[b], simplified_solutions[c]\n",
"sum_abc = simplify(a_val + b_val + c_val)\n",
"\n",
"print(f\"a: {a_val}\")\n",
"print(f\"b: {b_val}\")\n",
"print(f\"c: {c_val}\")\n",
"print(f\"a + b + c: {sum_abc}\")\n",
"```\n",
"\n",
"Please execute the above Python code to solve the system of equations and simplify the result.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is sh)...\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is python)...\u001b[0m\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"exitcode: 0 (execution succeeded)\n",
"Code output: \n",
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: sympy in /home/vscode/.local/lib/python3.9/site-packages (1.12)\n",
"Requirement already satisfied: mpmath>=0.19 in /home/vscode/.local/lib/python3.9/site-packages (from sympy) (1.3.0)\n",
"\n",
"a: (x**2 - 3*x*y + 2*x + y**2 - y)/(x**2 - x*y - x + y**2 - y + 1)\n",
"b: (2*x**2 - 3*x + y)/(x**2 - x*y - x + y**2 - y + 1)\n",
"c: (4*x**2 - 4*x*y - 6*x + 6*y**2 - 7*y + 7)/(x**2 - x*y - x + y**2 - y + 1)\n",
"a + b + c: 7\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"The given system of equations has been solved and simplified. The result is:\n",
"\n",
"$$\n",
"a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
"$$\n",
"\n",
"The sum $a + b + c$ is equal to $7$. Since we were able to find a unique solution for $a$, $b$, and $c$, the system of equations is complete and correctly formatted.\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
"\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
"\n",
"summarize the solution and explain the answer in an easy-to-understand way\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
"\n",
"Sure, let me summarize the solution and explain the answer in an easy-to-understand way.\n",
"\n",
"We were given a system of three equations with three unknowns, $a$, $b$, and $c$. The equations were:\n",
"\n",
"1. $ax + by + c = x + 7$\n",
"2. $a + bx + cy = 2x + 6y$\n",
"3. $ay + b + cx = 4x + y$\n",
"\n",
"We were asked to find the sum $a + b + c$ given that $x + y \\neq -1$.\n",
"\n",
"We used Python's SymPy library to solve the system of equations and found the following solutions for $a$, $b$, and $c$:\n",
"\n",
"$$\n",
"a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
"$$\n",
"\n",
"These solutions are expressed in terms of $x$ and $y$. However, we were able to find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
"\n",
"In conclusion, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
"\n",
"\u001b[32m***** Response from calling function \"ask_expert\" *****\u001b[0m\n",
"Sure, let me summarize the solution and explain the answer in an easy-to-understand way.\n",
"\n",
"We were given a system of three equations with three unknowns, $a$, $b$, and $c$. The equations were:\n",
"\n",
"1. $ax + by + c = x + 7$\n",
"2. $a + bx + cy = 2x + 6y$\n",
"3. $ay + b + cx = 4x + y$\n",
"\n",
"We were asked to find the sum $a + b + c$ given that $x + y \\neq -1$.\n",
"\n",
"We used Python's SymPy library to solve the system of equations and found the following solutions for $a$, $b$, and $c$:\n",
"\n",
"$$\n",
"a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
"c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
"$$\n",
"\n",
"These solutions are expressed in terms of $x$ and $y$. However, we were able to find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
"\n",
"In conclusion, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
"\u001b[32m*******************************************************\u001b[0m\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_student\u001b[0m (to student):\n",
"\n",
"The solution to the system of equations you provided is:\n",
"\n",
"1. $a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}$\n",
"2. $b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}$\n",
"3. $c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}$\n",
"\n",
"These solutions are expressed in terms of $x$ and $y$. However, we can find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
"\n",
"So, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
"\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant_for_student\u001b[0m (to student):\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[31m\n",
">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n"
]
}
],
"source": [
"# the assistant receives a message from the student, which contains the task description\n",
"student.initiate_chat(\n",
" assistant_for_student,\n",
" message=\"\"\"Find $a + b + c$, given that $x+y \\\\neq -1$ and \n",
"\\\\begin{align}\n",
"\tax + by + c & = x + 7,\\\\\n",
"\ta + bx + cy & = 2x + 6y,\\\\\n",
"\tay + b + cx & = 4x + y.\n",
"\\\\end{align}.\n",
"\"\"\",\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"When the assistant needs to consult the expert, it suggests a function call to `ask_expert`. When this happens, a line like the following will be displayed:\n",
"\n",
"***** Suggested function Call: ask_expert *****\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"vscode": {
"interpreter": {
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"2d910cfd2d2a4fc49fc30fbbdc5576a7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"454146d0f7224f038689031002906e6f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
"IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
"IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
],
"layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
"tabbable": null,
"tooltip": null
}
},
"577e1e3cc4db4942b0883577b3b52755": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
"tabbable": null,
"tooltip": null,
"value": 1
}
},
"6086462a12d54bafa59d3c4566f06cb2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"74a6ba0c3cbc4051be0a83e152fe1e62": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"7d3f3d9e15894d05a4d188ff4f466554": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"b40bdfb1ac1d4cffb7cefcb870c64d45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
"placeholder": "",
"style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
"tabbable": null,
"tooltip": null,
"value": " 1/1 [00:00<00:00, 44.69it/s]"
}
},
"ca245376fd9f4354af6b2befe4af4466": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"dc83c7bff2f241309537a8119dfc7555": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e4ae2b6f5a974fd4bafb6abb9d12ff26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
"placeholder": "",
"style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
"tabbable": null,
"tooltip": null,
"value": "100%"
}
},
"f1355871cc6f4dd4b50d9df5af20e5c8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|