File size: 34,793 Bytes
f9bd6e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Auto Generated Agent Chat: Collaborative Task Solving with Multiple Agents and Human Users\n",
    "\n",
    "AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation. Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
    "\n",
    "In this notebook, we demonstrate an application involving multiple agents and human users to work together and accomplish a task. `AssistantAgent` is an LLM-based agent that can write Python code (in a Python coding block) for a user to execute for a given task. `UserProxyAgent` is an agent which serves as a proxy for a user to execute the code written by `AssistantAgent`. We create multiple `UserProxyAgent` instances which can represent different human users.\n",
    "\n",
    "## Requirements\n",
    "\n",
    "AutoGen requires `Python>=3.8`. To run this notebook example, please install:\n",
    "```bash\n",
    "pip install pyautogen\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-02-13T23:40:52.317406Z",
     "iopub.status.busy": "2023-02-13T23:40:52.316561Z",
     "iopub.status.idle": "2023-02-13T23:40:52.321193Z",
     "shell.execute_reply": "2023-02-13T23:40:52.320628Z"
    }
   },
   "outputs": [],
   "source": [
    "# %pip install pyautogen~=0.1.1"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Set your API Endpoint\n",
    "\n",
    "The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n",
    "\n",
    "It first looks for an environment variable of a specified name (\"OAI_CONFIG_LIST\" in this example) which needs to be a valid json string. If that variable is not found, it then looks for a json file with the same name. It filters the configs by models (you can filter by other keys as well).\n",
    "\n",
    "The json looks like the following:\n",
    "```json\n",
    "[\n",
    "    {\n",
    "        \"model\": \"gpt-4\",\n",
    "        \"api_key\": \"<your OpenAI API key here>\"\n",
    "    },\n",
    "    {\n",
    "        \"model\": \"gpt-4\",\n",
    "        \"api_key\": \"<your Azure OpenAI API key here>\",\n",
    "        \"api_base\": \"<your Azure OpenAI API base here>\",\n",
    "        \"api_type\": \"azure\",\n",
    "        \"api_version\": \"2023-07-01-preview\"\n",
    "    },\n",
    "    {\n",
    "        \"model\": \"gpt-4-32k\",\n",
    "        \"api_key\": \"<your Azure OpenAI API key here>\",\n",
    "        \"api_base\": \"<your Azure OpenAI API base here>\",\n",
    "        \"api_type\": \"azure\",\n",
    "        \"api_version\": \"2023-07-01-preview\"\n",
    "    }\n",
    "]\n",
    "```\n",
    "\n",
    "If you open this notebook in colab, you can upload your files by clicking the file icon on the left panel and then choose \"upload file\" icon.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import autogen\n",
    "\n",
    "config_list = autogen.config_list_from_json(\n",
    "    \"OAI_CONFIG_LIST\",\n",
    "    filter_dict={\n",
    "        \"model\": [\"gpt-4\", \"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n",
    "    },\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Construct Agents\n",
    "\n",
    "We define `ask_expert` function to start a conversation between two agents and return a summary of the result. We construct an assistant agent named \"assistant_for_expert\" and a user proxy agent named \"expert\". We specify `human_input_mode` as \"ALWAYS\" in the user proxy agent, which will always ask for feedback from the expert user."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def ask_expert(message):\n",
    "    assistant_for_expert = autogen.AssistantAgent(\n",
    "        name=\"assistant_for_expert\",\n",
    "        llm_config={\n",
    "            \"temperature\": 0,\n",
    "            \"config_list\": config_list,\n",
    "        },\n",
    "    )\n",
    "    expert = autogen.UserProxyAgent(\n",
    "        name=\"expert\",\n",
    "        human_input_mode=\"ALWAYS\",\n",
    "        code_execution_config={\"work_dir\": \"expert\"},\n",
    "    )\n",
    "\n",
    "    expert.initiate_chat(assistant_for_expert, message=message)\n",
    "    expert.stop_reply_at_receive(assistant_for_expert)\n",
    "    # expert.human_input_mode, expert.max_consecutive_auto_reply = \"NEVER\", 0\n",
    "    # final message sent from the expert\n",
    "    expert.send(\"summarize the solution and explain the answer in an easy-to-understand way\", assistant_for_expert)\n",
    "    # return the last message the expert received\n",
    "    return expert.last_message()[\"content\"]\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We construct another assistant agent named \"assistant_for_student\" and a user proxy agent named \"student\". We specify `human_input_mode` as \"TERMINATE\" in the user proxy agent, which will ask for feedback when it receives a \"TERMINATE\" signal from the assistant agent. We set the `functions` in `AssistantAgent` and `function_map` in `UserProxyAgent` to use the created `ask_expert` function.\n",
    "\n",
    "For simplicity, the `ask_expert` function is defined to run locally. For real applications, the function should run remotely to interact with an expert user."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "assistant_for_student = autogen.AssistantAgent(\n",
    "    name=\"assistant_for_student\",\n",
    "    system_message=\"You are a helpful assistant. Reply TERMINATE when the task is done.\",\n",
    "    llm_config={\n",
    "        \"request_timeout\": 600,\n",
    "        \"seed\": 42,\n",
    "        # Excluding azure openai endpoints from the config list.\n",
    "        # Change to `exclude=\"openai\"` to exclude openai endpoints, or remove the `exclude` argument to include both.\n",
    "        \"config_list\": autogen.config_list_openai_aoai(exclude=\"aoai\"),\n",
    "        \"model\": \"gpt-4-0613\",  # make sure the endpoint you use supports the model\n",
    "        \"temperature\": 0,\n",
    "        \"functions\": [\n",
    "            {\n",
    "                \"name\": \"ask_expert\",\n",
    "                \"description\": \"ask expert when you can't solve the problem satisfactorily.\",\n",
    "                \"parameters\": {\n",
    "                    \"type\": \"object\",\n",
    "                    \"properties\": {\n",
    "                        \"message\": {\n",
    "                            \"type\": \"string\",\n",
    "                            \"description\": \"question to ask expert. Make sure the question include enough context, such as the code and the execution result. The expert does not know the conversation between you and the user, unless you share the conversation with the expert.\",\n",
    "                        },\n",
    "                    },\n",
    "                    \"required\": [\"message\"],\n",
    "                },\n",
    "            }\n",
    "        ],\n",
    "    }\n",
    ")\n",
    "\n",
    "student = autogen.UserProxyAgent(\n",
    "    name=\"student\",\n",
    "    human_input_mode=\"TERMINATE\",\n",
    "    max_consecutive_auto_reply=10,\n",
    "    code_execution_config={\"work_dir\": \"student\"},\n",
    "    function_map={\"ask_expert\": ask_expert},\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Perform a task\n",
    "\n",
    "We invoke the `initiate_chat()` method of the student proxy agent to start the conversation. When you run the cell below, you will be prompted to provide feedback after the assistant agent sends a \"TERMINATE\" signal in the end of the message. If you don't provide any feedback (by pressing Enter directly), the conversation will finish. Before the \"TERMINATE\" signal, the student proxy agent will try to execute the code suggested by the assistant agent on behalf of the user."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
      "\n",
      "Find $a + b + c$, given that $x+y \\neq -1$ and \n",
      "\\begin{align}\n",
      "\tax + by + c & = x + 7,\\\n",
      "\ta + bx + cy & = 2x + 6y,\\\n",
      "\tay + b + cx & = 4x + y.\n",
      "\\end{align}.\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_student\u001b[0m (to student):\n",
      "\n",
      "To find the values of $a$, $b$, and $c$, we need to solve the system of equations. However, the system of equations you provided seems to be incomplete or incorrect. The equations are not properly formatted, and it's unclear how $x$ and $y$ are related to $a$, $b$, and $c$. \n",
      "\n",
      "Could you please provide the correct system of equations?\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
      "\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_student\u001b[0m (to student):\n",
      "\n",
      "\u001b[32m***** Suggested function Call: ask_expert *****\u001b[0m\n",
      "Arguments: \n",
      "{\n",
      "  \"message\": \"The user provided a system of equations and asked to find $a + b + c$, given that $x+y \\\\neq -1$ and \\n\\\\begin{align}\\n\\tax + by + c & = x + 7,\\\\\\n\\ta + bx + cy & = 2x + 6y,\\\\\\n\\tay + b + cx & = 4x + y.\\n\\\\end{align}. However, the system of equations seems to be incomplete or incorrectly formatted. How should I proceed?\"\n",
      "}\n",
      "\u001b[32m***********************************************\u001b[0m\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[35m\n",
      ">>>>>>>> EXECUTING FUNCTION ask_expert...\u001b[0m\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "The user provided a system of equations and asked to find $a + b + c$, given that $x+y \\neq -1$ and \n",
      "\\begin{align}\n",
      "\tax + by + c & = x + 7,\\\n",
      "\ta + bx + cy & = 2x + 6y,\\\n",
      "\tay + b + cx & = 4x + y.\n",
      "\\end{align}. However, the system of equations seems to be incomplete or incorrectly formatted. How should I proceed?\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "To proceed, we can first try to solve the given system of equations and see if we can find a unique solution for $a$, $b$, and $c$. If we can't find a unique solution, we can then determine if there's any additional information needed or if the system is indeed incomplete or incorrectly formatted.\n",
      "\n",
      "Let's solve the given system of equations using Python's SymPy library.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "make sure you simplify the answer\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "Sure, I will simplify the answer. Let's solve the given system of equations using Python's SymPy library and simplify the result.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "First, let's install the SymPy library if you haven't already. Execute the following command to install it:\n",
      "\n",
      "```sh\n",
      "pip install sympy\n",
      "```\n",
      "\n",
      "Now, let's solve the given system of equations using Python's SymPy library and simplify the result.\n",
      "\n",
      "```python\n",
      "from sympy import symbols, Eq, solve, simplify\n",
      "\n",
      "a, b, c, x, y = symbols('a b c x y')\n",
      "\n",
      "eq1 = Eq(a * x + b * y + c, x + 7)\n",
      "eq2 = Eq(a + b * x + c * y, 2 * x + 6 * y)\n",
      "eq3 = Eq(a * y + b + c * x, 4 * x + y)\n",
      "\n",
      "solutions = solve((eq1, eq2, eq3), (a, b, c))\n",
      "\n",
      "simplified_solutions = {key: simplify(value) for key, value in solutions.items()}\n",
      "a_val, b_val, c_val = simplified_solutions[a], simplified_solutions[b], simplified_solutions[c]\n",
      "sum_abc = simplify(a_val + b_val + c_val)\n",
      "\n",
      "print(f\"a: {a_val}\")\n",
      "print(f\"b: {b_val}\")\n",
      "print(f\"c: {c_val}\")\n",
      "print(f\"a + b + c: {sum_abc}\")\n",
      "```\n",
      "\n",
      "Please execute the above Python code to solve the system of equations and simplify the result.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is sh)...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 1 (inferred language is python)...\u001b[0m\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "exitcode: 0 (execution succeeded)\n",
      "Code output: \n",
      "Defaulting to user installation because normal site-packages is not writeable\n",
      "Requirement already satisfied: sympy in /home/vscode/.local/lib/python3.9/site-packages (1.12)\n",
      "Requirement already satisfied: mpmath>=0.19 in /home/vscode/.local/lib/python3.9/site-packages (from sympy) (1.3.0)\n",
      "\n",
      "a: (x**2 - 3*x*y + 2*x + y**2 - y)/(x**2 - x*y - x + y**2 - y + 1)\n",
      "b: (2*x**2 - 3*x + y)/(x**2 - x*y - x + y**2 - y + 1)\n",
      "c: (4*x**2 - 4*x*y - 6*x + 6*y**2 - 7*y + 7)/(x**2 - x*y - x + y**2 - y + 1)\n",
      "a + b + c: 7\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "The given system of equations has been solved and simplified. The result is:\n",
      "\n",
      "$$\n",
      "a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
      "$$\n",
      "\n",
      "The sum $a + b + c$ is equal to $7$. Since we were able to find a unique solution for $a$, $b$, and $c$, the system of equations is complete and correctly formatted.\n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n",
      "\u001b[33mexpert\u001b[0m (to assistant_for_expert):\n",
      "\n",
      "summarize the solution and explain the answer in an easy-to-understand way\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_expert\u001b[0m (to expert):\n",
      "\n",
      "Sure, let me summarize the solution and explain the answer in an easy-to-understand way.\n",
      "\n",
      "We were given a system of three equations with three unknowns, $a$, $b$, and $c$. The equations were:\n",
      "\n",
      "1. $ax + by + c = x + 7$\n",
      "2. $a + bx + cy = 2x + 6y$\n",
      "3. $ay + b + cx = 4x + y$\n",
      "\n",
      "We were asked to find the sum $a + b + c$ given that $x + y \\neq -1$.\n",
      "\n",
      "We used Python's SymPy library to solve the system of equations and found the following solutions for $a$, $b$, and $c$:\n",
      "\n",
      "$$\n",
      "a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
      "$$\n",
      "\n",
      "These solutions are expressed in terms of $x$ and $y$. However, we were able to find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
      "\n",
      "In conclusion, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
      "\n",
      "\u001b[32m***** Response from calling function \"ask_expert\" *****\u001b[0m\n",
      "Sure, let me summarize the solution and explain the answer in an easy-to-understand way.\n",
      "\n",
      "We were given a system of three equations with three unknowns, $a$, $b$, and $c$. The equations were:\n",
      "\n",
      "1. $ax + by + c = x + 7$\n",
      "2. $a + bx + cy = 2x + 6y$\n",
      "3. $ay + b + cx = 4x + y$\n",
      "\n",
      "We were asked to find the sum $a + b + c$ given that $x + y \\neq -1$.\n",
      "\n",
      "We used Python's SymPy library to solve the system of equations and found the following solutions for $a$, $b$, and $c$:\n",
      "\n",
      "$$\n",
      "a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}, \\\\\n",
      "c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}.\n",
      "$$\n",
      "\n",
      "These solutions are expressed in terms of $x$ and $y$. However, we were able to find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
      "\n",
      "In conclusion, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
      "\u001b[32m*******************************************************\u001b[0m\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_student\u001b[0m (to student):\n",
      "\n",
      "The solution to the system of equations you provided is:\n",
      "\n",
      "1. $a = \\frac{x^2 - 3xy + 2x + y^2 - y}{x^2 - xy - x + y^2 - y + 1}$\n",
      "2. $b = \\frac{2x^2 - 3x + y}{x^2 - xy - x + y^2 - y + 1}$\n",
      "3. $c = \\frac{4x^2 - 4xy - 6x + 6y^2 - 7y + 7}{x^2 - xy - x + y^2 - y + 1}$\n",
      "\n",
      "These solutions are expressed in terms of $x$ and $y$. However, we can find the sum $a + b + c$ without knowing the values of $x$ and $y$. The sum $a + b + c$ simplifies to $7$.\n",
      "\n",
      "So, the sum $a + b + c$ for the given system of equations is equal to $7$.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[33mstudent\u001b[0m (to assistant_for_student):\n",
      "\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant_for_student\u001b[0m (to student):\n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# the assistant receives a message from the student, which contains the task description\n",
    "student.initiate_chat(\n",
    "    assistant_for_student,\n",
    "    message=\"\"\"Find $a + b + c$, given that $x+y \\\\neq -1$ and \n",
    "\\\\begin{align}\n",
    "\tax + by + c & = x + 7,\\\\\n",
    "\ta + bx + cy & = 2x + 6y,\\\\\n",
    "\tay + b + cx & = 4x + y.\n",
    "\\\\end{align}.\n",
    "\"\"\",\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When the assistant needs to consult the expert, it suggests a function call to `ask_expert`. When this happens, a line like the following will be displayed:\n",
    "\n",
    "***** Suggested function Call: ask_expert *****\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  },
  "vscode": {
   "interpreter": {
    "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {
     "2d910cfd2d2a4fc49fc30fbbdc5576a7": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "454146d0f7224f038689031002906e6f": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HBoxModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HBoxModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HBoxView",
       "box_style": "",
       "children": [
        "IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
        "IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
        "IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
       ],
       "layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
       "tabbable": null,
       "tooltip": null
      }
     },
     "577e1e3cc4db4942b0883577b3b52755": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "FloatProgressModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "FloatProgressModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "ProgressView",
       "bar_style": "success",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
       "max": 1,
       "min": 0,
       "orientation": "horizontal",
       "style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
       "tabbable": null,
       "tooltip": null,
       "value": 1
      }
     },
     "6086462a12d54bafa59d3c4566f06cb2": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "74a6ba0c3cbc4051be0a83e152fe1e62": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "ProgressStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "ProgressStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "bar_color": null,
       "description_width": ""
      }
     },
     "7d3f3d9e15894d05a4d188ff4f466554": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "background": null,
       "description_width": "",
       "font_size": null,
       "text_color": null
      }
     },
     "b40bdfb1ac1d4cffb7cefcb870c64d45": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HTMLView",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
       "placeholder": "​",
       "style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
       "tabbable": null,
       "tooltip": null,
       "value": " 1/1 [00:00&lt;00:00, 44.69it/s]"
      }
     },
     "ca245376fd9f4354af6b2befe4af4466": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "background": null,
       "description_width": "",
       "font_size": null,
       "text_color": null
      }
     },
     "dc83c7bff2f241309537a8119dfc7555": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "e4ae2b6f5a974fd4bafb6abb9d12ff26": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HTMLView",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
       "placeholder": "​",
       "style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
       "tabbable": null,
       "tooltip": null,
       "value": "100%"
      }
     },
     "f1355871cc6f4dd4b50d9df5af20e5c8": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     }
    },
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}