File size: 24,339 Bytes
383a505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c0866b
 
383a505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c0866b
383a505
 
 
 
 
 
 
 
3c0866b
 
383a505
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from numpy import nan as np_nan
from numpy import where as np_where
from numpy import random as np_random
from numpy import zeros as np_zeros
from numpy import array as np_array
from pandas import concat as pd_concat
from pandas import merge as pd_merge
from pandas import DataFrame

def DK_NHL_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribution_type):
    total_sims = 1000
    
    projects_raw = projections_file.copy()
    projects_raw = projects_raw.replace("", np_nan)
    dk_df = projects_raw.sort_values(by='Median', ascending=False)
    
    basic_own_df = dk_df.copy()
    basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
            
    def calculate_ownership(df, position):
        # Filter the dataframe based on the position
        frame = df[df['Position'].str.contains(position)]
        
        # Calculate Small Field Own%
        frame['Base Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Base Own%'] = np_where(
            frame['Base Own%'] > 75,
            75,
            frame['Base Own%']
        )
        
        # Calculate Small Field Own%
        frame['Small Field Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Small Field Own%'] = np_where(
            frame['Small Field Own%'] > 75,
            75,
            frame['Small Field Own%']
        )

        # Calculate Large Field Own%
        frame['Large Field Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Large Field Own%'] = np_where(
            frame['Large Field Own%'] > 75,
            75,
            frame['Large Field Own%']
        )

        # Calculate Cash Own%
        frame['Cash Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Cash Own%'] = np_where(
            frame['Cash Own%'] > 75,
            75,
            frame['Cash Own%']
        )

        return frame

    # Apply the function to each dataframe
    w_frame = calculate_ownership(basic_own_df, 'W')
    c_frame = calculate_ownership(basic_own_df, 'C')
    d_frame = calculate_ownership(basic_own_df, 'D')
    g_frame = calculate_ownership(basic_own_df, 'G')

    w_reg_norm_var = 330 / w_frame['Base Own%'].sum()
    w_small_norm_var = 330 / w_frame['Small Field Own%'].sum()
    w_large_norm_var = 330 / w_frame['Large Field Own%'].sum()
    w_cash_norm_var = 330 / w_frame['Cash Own%'].sum()
    w_frame['Own'] = w_frame['Base Own%'] * w_reg_norm_var
    w_frame['Small Field Own%'] = w_frame['Small Field Own%'] * w_small_norm_var
    w_frame['Large Field Own%'] = w_frame['Large Field Own%'] * w_large_norm_var
    w_frame['Cash Own%'] = w_frame['Cash Own%'] * w_cash_norm_var

    c_reg_norm_var = 260 / c_frame['Base Own%'].sum()
    c_small_norm_var = 260 / c_frame['Small Field Own%'].sum()
    c_large_norm_var = 260 / c_frame['Large Field Own%'].sum()
    c_cash_norm_var = 260 / c_frame['Cash Own%'].sum()
    c_frame['Own'] = c_frame['Base Own%'] * c_reg_norm_var
    c_frame['Small Field Own%'] = c_frame['Small Field Own%'] * c_small_norm_var
    c_frame['Large Field Own%'] = c_frame['Large Field Own%'] * c_large_norm_var
    c_frame['Cash Own%'] = c_frame['Cash Own%'] * c_cash_norm_var

    d_reg_norm_var = 210 / d_frame['Base Own%'].sum()
    d_small_norm_var = 210 / d_frame['Small Field Own%'].sum()
    d_large_norm_var = 210 / d_frame['Large Field Own%'].sum()
    d_cash_norm_var = 210 / d_frame['Cash Own%'].sum()
    d_frame['Own'] = d_frame['Base Own%'] * d_reg_norm_var
    d_frame['Small Field Own%'] = d_frame['Small Field Own%'] * d_small_norm_var
    d_frame['Large Field Own%'] = d_frame['Large Field Own%'] * d_large_norm_var
    d_frame['Cash Own%'] = d_frame['Cash Own%'] * d_cash_norm_var

    g_reg_norm_var = 100 / g_frame['Base Own%'].sum()
    g_small_norm_var = 100 / g_frame['Small Field Own%'].sum()
    g_large_norm_var = 100 / g_frame['Large Field Own%'].sum()
    g_cash_norm_var = 100 / g_frame['Cash Own%'].sum()
    g_frame['Own'] = g_frame['Base Own%'] * g_reg_norm_var
    g_frame['Small Field Own%'] = g_frame['Small Field Own%'] * g_small_norm_var
    g_frame['Large Field Own%'] = g_frame['Large Field Own%'] * g_large_norm_var
    g_frame['Cash Own%'] = g_frame['Cash Own%'] * g_cash_norm_var

    basic_own_df = pd_concat([w_frame, c_frame, d_frame, g_frame])

    basic_own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
    small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
    large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
    cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
    basic_team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
    basic_opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))

    flex_file = basic_own_df.copy()
    flex_file['Floor_raw'] = flex_file['Median'] * .25
    flex_file['Ceiling_raw'] = flex_file['Median'] * 2
    flex_file['Floor'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
    flex_file['Floor'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
    flex_file['Ceiling'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
    flex_file['Ceiling'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
    flex_file['STD'] = flex_file['Median'] / 3
    flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
    flex_file = flex_file.reset_index(drop=True)
    hold_file = flex_file.copy()
    overall_file = flex_file.copy()
    salary_file = flex_file.copy()
    
    try:    
        overall_floor_gpu = np_array(overall_file['Floor'])
        overall_ceiling_gpu = np_array(overall_file['Ceiling'])
        overall_median_gpu = np_array(overall_file['Median'])
        overall_std_gpu = np_array(overall_file['STD'])
        overall_salary_gpu = np_array(overall_file['Salary'])
        
        data_shape = (len(overall_file['Player']), total_sims)  # Example: 1000 rows
        salary_array = np_zeros(data_shape)
        sim_array = np_zeros(data_shape)
        
        for x in range(0, total_sims):    
            result_gpu = overall_salary_gpu
            salary_array[:, x] = result_gpu 
        cupy_array = salary_array
        
        salary_file = salary_file.reset_index(drop=True)
        salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
        salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
    except:
        for x in range(0,total_sims):    
            salary_file[x] = salary_file['Salary']
        salary_check_file = salary_file.copy()

    salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

    salary_file = salary_file.div(1000)
    
    try:
        for x in range(0, total_sims):    
            if distribution_type == 'normal':
                # Normal distribution (existing logic)
                result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
            elif distribution_type == 'poisson':
                # Poisson distribution - using median as lambda
                result_gpu = np_random.poisson(overall_median_gpu)
            elif distribution_type == 'bimodal':
                # Bimodal distribution - mixture of two normal distributions
                # First peak centered at 80% of median, second at 120% of median
                if np_random.random() < 0.5:
                    result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
                else:
                    result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
            else:
                raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
                
            sim_array[:, x] = result_gpu 
        add_array = sim_array
        
        overall_file = overall_file.reset_index(drop=True)
        df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
        check_file = pd_concat([overall_file, df2], axis=1)
    except:
        for x in range(0,total_sims):    
            if distribution_type == 'normal':
                overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
            elif distribution_type == 'poisson':
                overall_file[x] = np_random.poisson(overall_file['Median'])
            elif distribution_type == 'bimodal':
                # Bimodal distribution fallback
                if np_random.random() < 0.5:
                    overall_file[x] = np_random.normal(overall_file['Median'] * 0.8, overall_file['STD'])
                else:
                    overall_file[x] = np_random.normal(overall_file['Median'] * 1.2, overall_file['STD'])
        check_file = overall_file.copy()
        
    overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

    players_only = hold_file[['Player']]
    raw_lineups_file = players_only

    for x in range(0,total_sims):
        maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
        raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
        players_only[x] = raw_lineups_file[x].rank(ascending=False)

    players_only=players_only.drop(['Player'], axis=1)
    
    salary_2x_check = (overall_file - (salary_file*2))
    salary_3x_check = (overall_file - (salary_file*3))
    salary_4x_check = (overall_file - (salary_file*4))

    players_only['Average_Rank'] = players_only.mean(axis=1)
    players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
    players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
    players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
    players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
    players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
    players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
    players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)

    players_only['Player'] = hold_file[['Player']]

    final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]

    final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
    final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
    final_Proj['Own'] = final_Proj['Player'].map(basic_own_dict).astype(float)
    final_Proj['Small Field Own%'] = final_Proj['Player'].map(small_own_dict).astype(float)
    final_Proj['Large Field Own%'] = final_Proj['Player'].map(large_own_dict).astype(float)
    final_Proj['Cash Own%'] = final_Proj['Player'].map(cash_own_dict).astype(float)
    final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
    final_Proj['Team'] = final_Proj['name_team'].map(basic_team_dict)
    final_Proj['Opp'] = final_Proj['Player'].map(basic_opp_dict)
    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
                             'Small Field Own%', 'Large Field Own%', 'Cash Own%']]
    final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    
    return final_Proj.copy()

def FD_NHL_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribution_type):
    total_sims = 1000
        
    projects_raw = projections_file.copy()
    fd_df = projects_raw.sort_values(by='Median', ascending=False)
    
    basic_own_df = fd_df.copy()
    basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
            
    def calculate_ownership(df, position):
        # Filter the dataframe based on the position
        frame = df[df['Position'].str.contains(position)]
        
        frame['Base Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Base Own%'] = np_where(
            frame['Base Own%'] > 75,
            75,
            frame['Base Own%']
        )
        
        # Calculate Small Field Own%
        frame['Small Field Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Small Field Own%'] = np_where(
            frame['Small Field Own%'] > 75,
            75,
            frame['Small Field Own%']
        )

        # Calculate Large Field Own%
        frame['Large Field Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Large Field Own%'] = np_where(
            frame['Large Field Own%'] > 75,
            75,
            frame['Large Field Own%']
        )

        # Calculate Cash Own%
        frame['Cash Own%'] = np_where(
            (frame['Own'] - frame['Own'].mean() >= 0),
            frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
            frame['Own']
        )
        frame['Cash Own%'] = np_where(
            frame['Cash Own%'] > 75,
            75,
            frame['Cash Own%']
        )

        return frame

    # Apply the function to each dataframe
    w_frame = calculate_ownership(basic_own_df, 'W')
    c_frame = calculate_ownership(basic_own_df, 'C')
    d_frame = calculate_ownership(basic_own_df, 'D')
    g_frame = calculate_ownership(basic_own_df, 'G')

    w_reg_norm_var = 295 / w_frame['Base Own%'].sum()
    w_small_norm_var = 295 / w_frame['Small Field Own%'].sum()
    w_large_norm_var = 295 / w_frame['Large Field Own%'].sum()
    w_cash_norm_var = 295 / w_frame['Cash Own%'].sum()
    w_frame['Own'] = w_frame['Base Own%'] * w_reg_norm_var
    w_frame['Small Field Own%'] = w_frame['Small Field Own%'] * w_small_norm_var
    w_frame['Large Field Own%'] = w_frame['Large Field Own%'] * w_large_norm_var
    w_frame['Cash Own%'] = w_frame['Cash Own%'] * w_cash_norm_var

    c_reg_norm_var = 295 / c_frame['Base Own%'].sum()
    c_small_norm_var = 295 / c_frame['Small Field Own%'].sum()
    c_large_norm_var = 295 / c_frame['Large Field Own%'].sum()
    c_cash_norm_var = 295 / c_frame['Cash Own%'].sum()
    c_frame['Own'] = c_frame['Base Own%'] * c_reg_norm_var
    c_frame['Small Field Own%'] = c_frame['Small Field Own%'] * c_small_norm_var
    c_frame['Large Field Own%'] = c_frame['Large Field Own%'] * c_large_norm_var
    c_frame['Cash Own%'] = c_frame['Cash Own%'] * c_cash_norm_var

    d_reg_norm_var = 210 / d_frame['Base Own%'].sum()
    d_small_norm_var = 210 / d_frame['Small Field Own%'].sum()
    d_large_norm_var = 210 / d_frame['Large Field Own%'].sum()
    d_cash_norm_var = 210 / d_frame['Cash Own%'].sum()
    d_frame['Own'] = d_frame['Base Own%'] * d_reg_norm_var
    d_frame['Small Field Own%'] = d_frame['Small Field Own%'] * d_small_norm_var
    d_frame['Large Field Own%'] = d_frame['Large Field Own%'] * d_large_norm_var
    d_frame['Cash Own%'] = d_frame['Cash Own%'] * d_cash_norm_var

    g_reg_norm_var = 100 / g_frame['Base Own%'].sum()
    g_small_norm_var = 100 / g_frame['Small Field Own%'].sum()
    g_large_norm_var = 100 / g_frame['Large Field Own%'].sum()
    g_cash_norm_var = 100 / g_frame['Cash Own%'].sum()
    g_frame['Own'] = g_frame['Base Own%'] * g_reg_norm_var
    g_frame['Small Field Own%'] = g_frame['Small Field Own%'] * g_small_norm_var
    g_frame['Large Field Own%'] = g_frame['Large Field Own%'] * g_large_norm_var
    g_frame['Cash Own%'] = g_frame['Cash Own%'] * g_cash_norm_var

    basic_own_df = pd_concat([w_frame, c_frame, d_frame, g_frame])

    basic_own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
    small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
    large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
    cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
    basic_team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
    basic_opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))

    flex_file = basic_own_df.copy()
    flex_file['Floor_raw'] = flex_file['Median'] * .25
    flex_file['Ceiling_raw'] = flex_file['Median'] * 2
    flex_file['Floor'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
    flex_file['Floor'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
    flex_file['Ceiling'] = np_where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
    flex_file['Ceiling'] = np_where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
    flex_file['STD'] = flex_file['Median'] / 3
    flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
    flex_file = flex_file.reset_index(drop=True)
    hold_file = flex_file.copy()
    overall_file = flex_file.copy()
    salary_file = flex_file.copy()
    
    try:    
        overall_floor_gpu = np_array(overall_file['Floor'])
        overall_ceiling_gpu = np_array(overall_file['Ceiling'])
        overall_median_gpu = np_array(overall_file['Median'])
        overall_std_gpu = np_array(overall_file['STD'])
        overall_salary_gpu = np_array(overall_file['Salary'])
        
        data_shape = (len(overall_file['Player']), total_sims)  # Example: 1000 rows
        salary_array = np_zeros(data_shape)
        sim_array = np_zeros(data_shape)
        
        for x in range(0, total_sims):    
            result_gpu = overall_salary_gpu
            salary_array[:, x] = result_gpu 
        cupy_array = salary_array
        
        salary_file = salary_file.reset_index(drop=True)
        salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
        salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
    except:
        for x in range(0,total_sims):    
            salary_file[x] = salary_file['Salary']
        salary_check_file = salary_file.copy()

    salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

    salary_file = salary_file.div(1000)
    
    try:
        for x in range(0, total_sims):    
            if distribution_type == 'normal':
                # Normal distribution (existing logic)
                result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
            elif distribution_type == 'poisson':
                # Poisson distribution - using median as lambda
                result_gpu = np_random.poisson(overall_median_gpu)
            elif distribution_type == 'bimodal':
                # Bimodal distribution - mixture of two normal distributions
                # First peak centered at 80% of median, second at 120% of median
                if np_random.random() < 0.5:
                    result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
                else:
                    result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
            else:
                raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
                
            sim_array[:, x] = result_gpu 
        add_array = sim_array
        
        overall_file = overall_file.reset_index(drop=True)
        df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
        check_file = pd_concat([overall_file, df2], axis=1)
    except:
        for x in range(0,total_sims):    
            if distribution_type == 'normal':
                overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
            elif distribution_type == 'poisson':
                overall_file[x] = np_random.poisson(overall_file['Median'])
            elif distribution_type == 'bimodal':
                # Bimodal distribution fallback
                if np_random.random() < 0.5:
                    overall_file[x] = np_random.normal(overall_file['Median'] * 0.8, overall_file['STD'])
                else:
                    overall_file[x] = np_random.normal(overall_file['Median'] * 1.2, overall_file['STD'])
        check_file = overall_file.copy()
        
    overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)

    players_only = hold_file[['Player']]
    raw_lineups_file = players_only

    for x in range(0,total_sims):
        maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
        raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
        players_only[x] = raw_lineups_file[x].rank(ascending=False)

    players_only=players_only.drop(['Player'], axis=1)
        
    salary_2x_check = (overall_file - (salary_file*2))
    salary_3x_check = (overall_file - (salary_file*3))
    salary_4x_check = (overall_file - (salary_file*4))

    players_only['Average_Rank'] = players_only.mean(axis=1)
    players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
    players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
    players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
    players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
    players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
    players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
    players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)

    players_only['Player'] = hold_file[['Player']]

    final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]

    final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
    final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
    final_Proj['Own'] = final_Proj['Player'].map(basic_own_dict).astype(float)
    final_Proj['Small Field Own%'] = final_Proj['Player'].map(small_own_dict).astype(float)
    final_Proj['Large Field Own%'] = final_Proj['Player'].map(large_own_dict).astype(float)
    final_Proj['Cash Own%'] = final_Proj['Player'].map(cash_own_dict).astype(float)
    final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
    final_Proj['Team'] = final_Proj['name_team'].map(basic_team_dict)
    final_Proj['Opp'] = final_Proj['Player'].map(basic_opp_dict)
    final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
                             'Small Field Own%', 'Large Field Own%', 'Cash Own%']]
    final_Proj['Salary'] = final_Proj['Salary'].astype(int)
    final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    
    return final_Proj.copy()