Custom_ROO_Tool / function_hold /MMA_functions.py
James McCool
Add MMA support to ROO simulation with site-specific functions and dynamic projections
efd84aa
raw
history blame
21.5 kB
from numpy import nan as np_nan
from numpy import where as np_where
from numpy import random as np_random
from numpy import zeros as np_zeros
from numpy import array as np_array
from pandas import concat as pd_concat
from pandas import merge as pd_merge
from pandas import DataFrame
def DK_MMA_ROO_Build(projections_file, std_var, distribution_type):
total_sims = 1000
projects_raw = projections_file.copy()
projects_raw = projects_raw.replace("", np_nan)
dk_df = projects_raw.sort_values(by='Median', ascending=False)
basic_own_df = dk_df.copy()
def calculate_ownership(df):
# Filter the dataframe based on the position
frame = df.copy()
# Calculate Small Field Own%
frame['Base Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Base Own%'] = np_where(
frame['Base Own%'] > 85,
85,
frame['Base Own%']
)
# Calculate Small Field Own%
frame['Small Field Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Small Field Own%'] = np_where(
frame['Small Field Own%'] > 85,
85,
frame['Small Field Own%']
)
# Calculate Large Field Own%
frame['Large Field Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Large Field Own%'] = np_where(
frame['Large Field Own%'] > 85,
85,
frame['Large Field Own%']
)
# Calculate Cash Own%
frame['Cash Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Cash Own%'] = np_where(
frame['Cash Own%'] > 85,
85,
frame['Cash Own%']
)
return frame
# Apply the function to each dataframe
basic_own_df = calculate_ownership(basic_own_df)
own_norm_var_reg = 600 / basic_own_df['Own'].sum()
own_norm_var_small = 600 / basic_own_df['Small Field Own%'].sum()
own_norm_var_large = 600 / basic_own_df['Large Field Own%'].sum()
own_norm_var_cash = 600 / basic_own_df['Cash Own%'].sum()
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
basic_own_df['Own'] = np_where(basic_own_df['Own'] > 90, 90, basic_own_df['Own'])
# Apply the function to each dataframe
basic_own_df = calculate_ownership(basic_own_df)
own_norm_var_reg = 600 / basic_own_df['Own'].sum()
own_norm_var_small = 600 / basic_own_df['Small Field Own%'].sum()
own_norm_var_large = 600 / basic_own_df['Large Field Own%'].sum()
own_norm_var_cash = 600 / basic_own_df['Cash Own%'].sum()
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
min_dict = dict(zip(basic_own_df.Player, basic_own_df.KO_var))
flex_file = basic_own_df[['Player', 'Salary', 'Median', 'KO_var']]
flex_file = flex_file.rename(columns={"Agg": "Median"})
flex_file['Floor'] = flex_file['Median'] * (1-flex_file['KO_var'])
flex_file['Ceiling'] = flex_file['Median'] * (1+flex_file['KO_var'])
flex_file['STD'] = (flex_file['Median'] / std_var)
flex_file = flex_file[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
flex_file = flex_file.reset_index(drop=True)
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
try:
overall_floor_gpu = np_array(overall_file['Floor'])
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
overall_median_gpu = np_array(overall_file['Median'])
overall_std_gpu = np_array(overall_file['STD'])
overall_salary_gpu = np_array(overall_file['Salary'])
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
salary_array = np_zeros(data_shape)
sim_array = np_zeros(data_shape)
for x in range(0, total_sims):
result_gpu = overall_salary_gpu
salary_array[:, x] = result_gpu
cupy_array = salary_array
salary_file = salary_file.reset_index(drop=True)
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
except:
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_check_file = salary_file.copy()
salary_file=salary_check_file.drop(['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
try:
for x in range(0, total_sims):
if distribution_type == 'normal':
# Normal distribution (existing logic)
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
elif distribution_type == 'poisson':
# Poisson distribution - using median as lambda
result_gpu = np_random.poisson(overall_median_gpu)
elif distribution_type == 'bimodal':
# Bimodal distribution - mixture of two normal distributions
# First peak centered at 80% of median, second at 120% of median
if np_random.random() < 0.5:
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
else:
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
else:
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
sim_array[:, x] = result_gpu
add_array = sim_array
overall_file = overall_file.reset_index(drop=True)
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
check_file = pd_concat([overall_file, df2], axis=1)
except:
for x in range(0,total_sims):
if distribution_type == 'normal':
overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
elif distribution_type == 'poisson':
overall_file[x] = np_random.poisson(overall_file['Median'])
elif distribution_type == 'bimodal':
# Bimodal distribution fallback
if np_random.random() < 0.5:
overall_file[x] = np_random.normal(overall_file['Floor'], overall_file['STD'])
else:
overall_file[x] = np_random.normal(overall_file['Ceiling'], overall_file['STD'])
check_file = overall_file.copy()
overall_file=check_file.drop(['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_4x_check = (overall_file - (salary_file*4))
salary_5x_check = (overall_file - (salary_file*5))
salary_6x_check = (overall_file - (salary_file*6))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
final_Proj['Large_Own'] = final_Proj['Player'].map(large_own_dict)
final_Proj['Cash_Own'] = final_Proj['Player'].map(cash_own_dict)
final_Proj['CPT_Own'] = final_Proj['Own'] / 6
final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
return final_Proj.copy()
def FD_MMA_ROO_Build(projections_file, std_var, distribution_type):
total_sims = 1000
projects_raw = projections_file.copy()
fd_df = projects_raw.sort_values(by='Median', ascending=False)
basic_own_df = fd_df.copy()
def calculate_ownership(df):
# Filter the dataframe based on the position
frame = df.copy()
# Calculate Small Field Own%
frame['Base Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Base Own%'] = np_where(
frame['Base Own%'] > 85,
85,
frame['Base Own%']
)
# Calculate Small Field Own%
frame['Small Field Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Small Field Own%'] = np_where(
frame['Small Field Own%'] > 85,
85,
frame['Small Field Own%']
)
# Calculate Large Field Own%
frame['Large Field Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Large Field Own%'] = np_where(
frame['Large Field Own%'] > 85,
85,
frame['Large Field Own%']
)
# Calculate Cash Own%
frame['Cash Own%'] = np_where(
(frame['Own'] - frame['Own'].mean() >= 0),
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
frame['Own']
)
frame['Cash Own%'] = np_where(
frame['Cash Own%'] > 85,
85,
frame['Cash Own%']
)
return frame
# Apply the function to each dataframe
basic_own_df = calculate_ownership(basic_own_df)
own_norm_var_reg = 600 / basic_own_df['Own'].sum()
own_norm_var_small = 600 / basic_own_df['Small Field Own%'].sum()
own_norm_var_large = 600 / basic_own_df['Large Field Own%'].sum()
own_norm_var_cash = 600 / basic_own_df['Cash Own%'].sum()
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
basic_own_df['Own'] = np_where(basic_own_df['Own'] > 90, 90, basic_own_df['Own'])
# Apply the function to each dataframe
basic_own_df = calculate_ownership(basic_own_df)
own_norm_var_reg = 600 / basic_own_df['Own'].sum()
own_norm_var_small = 600 / basic_own_df['Small Field Own%'].sum()
own_norm_var_large = 600 / basic_own_df['Large Field Own%'].sum()
own_norm_var_cash = 600 / basic_own_df['Cash Own%'].sum()
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
min_dict = dict(zip(basic_own_df.Player, basic_own_df.KO_var))
flex_file = basic_own_df[['Player', 'Salary', 'Median', 'KO_var']]
flex_file = flex_file.rename(columns={"Agg": "Median"})
flex_file['Floor'] = flex_file['Median'] * (1-flex_file['KO_var'])
flex_file['Ceiling'] = flex_file['Median'] * (1+flex_file['KO_var'])
flex_file['STD'] = (flex_file['Median'] / std_var)
flex_file = flex_file[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
flex_file = flex_file.reset_index(drop=True)
hold_file = flex_file.copy()
overall_file = flex_file.copy()
salary_file = flex_file.copy()
try:
overall_floor_gpu = np_array(overall_file['Floor'])
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
overall_median_gpu = np_array(overall_file['Median'])
overall_std_gpu = np_array(overall_file['STD'])
overall_salary_gpu = np_array(overall_file['Salary'])
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
salary_array = np_zeros(data_shape)
sim_array = np_zeros(data_shape)
for x in range(0, total_sims):
result_gpu = overall_salary_gpu
salary_array[:, x] = result_gpu
cupy_array = salary_array
salary_file = salary_file.reset_index(drop=True)
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
except:
for x in range(0,total_sims):
salary_file[x] = salary_file['Salary']
salary_check_file = salary_file.copy()
salary_file=salary_check_file.drop(['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
salary_file = salary_file.div(1000)
try:
for x in range(0, total_sims):
if distribution_type == 'normal':
# Normal distribution (existing logic)
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
elif distribution_type == 'poisson':
# Poisson distribution - using median as lambda
result_gpu = np_random.poisson(overall_median_gpu)
elif distribution_type == 'bimodal':
# Bimodal distribution - mixture of two normal distributions
# First peak centered at 80% of median, second at 120% of median
if np_random.random() < 0.5:
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
else:
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
else:
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
sim_array[:, x] = result_gpu
add_array = sim_array
overall_file = overall_file.reset_index(drop=True)
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
check_file = pd_concat([overall_file, df2], axis=1)
except:
for x in range(0,total_sims):
if distribution_type == 'normal':
overall_file[x] = np_random.normal(overall_file['Median'], overall_file['STD'])
elif distribution_type == 'poisson':
overall_file[x] = np_random.poisson(overall_file['Median'])
elif distribution_type == 'bimodal':
# Bimodal distribution fallback
if np_random.random() < 0.5:
overall_file[x] = np_random.normal(overall_file['Floor'], overall_file['STD'])
else:
overall_file[x] = np_random.normal(overall_file['Ceiling'], overall_file['STD'])
check_file = overall_file.copy()
overall_file=check_file.drop(['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
players_only = hold_file[['Player']]
raw_lineups_file = players_only
for x in range(0,total_sims):
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
players_only[x] = raw_lineups_file[x].rank(ascending=False)
players_only=players_only.drop(['Player'], axis=1)
salary_4x_check = (overall_file - (salary_file*4))
salary_5x_check = (overall_file - (salary_file*5))
salary_6x_check = (overall_file - (salary_file*6))
gpp_check = (overall_file - ((salary_file*5)+10))
players_only['Average_Rank'] = players_only.mean(axis=1)
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
players_only['Player'] = hold_file[['Player']]
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
final_Proj['Large_Own'] = final_Proj['Player'].map(large_own_dict)
final_Proj['Cash_Own'] = final_Proj['Player'].map(cash_own_dict)
final_Proj['CPT_Own'] = final_Proj['Own'] / 6
final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
final_Proj['Salary'] = final_Proj['Salary'].astype(int)
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
return final_Proj.copy()