Spaces:
Running
Running
James McCool
commited on
Commit
·
0cd4d7f
1
Parent(s):
8c22e49
Add sport selection and dynamic template for NBA, NFL, and MLB projections
Browse files- app.py +13 -4
- function_hold/NBA_functions.py +399 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -28,9 +28,14 @@ tab1, tab2 = st.tabs(["Data Load", "Manage Portfolio"])
|
|
28 |
with tab1:
|
29 |
if st.button('Clear data', key='reset1'):
|
30 |
st.session_state.clear()
|
31 |
-
|
32 |
st.subheader("Projections File")
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Create two columns for the uploader and template button
|
36 |
upload_col, template_col = st.columns([3, 1])
|
@@ -39,8 +44,12 @@ with tab1:
|
|
39 |
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
40 |
|
41 |
with template_col:
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
# Add download button for template
|
45 |
st.download_button(
|
46 |
label="Template",
|
|
|
28 |
with tab1:
|
29 |
if st.button('Clear data', key='reset1'):
|
30 |
st.session_state.clear()
|
31 |
+
sport_var = st.selectbox("Select Sport", ["NBA", "NFL", "MLB"])
|
32 |
st.subheader("Projections File")
|
33 |
+
if sport_var == "NBA":
|
34 |
+
st.info("upload a projections file that has Data oriented in the following format: 'Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'")
|
35 |
+
elif sport_var == "NFL":
|
36 |
+
st.info("upload a projections file that has Data oriented in the following format: 'Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'")
|
37 |
+
elif sport_var == "MLB":
|
38 |
+
st.info("upload a projections file that has Data oriented in the following format: 'Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'")
|
39 |
|
40 |
# Create two columns for the uploader and template button
|
41 |
upload_col, template_col = st.columns([3, 1])
|
|
|
44 |
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
45 |
|
46 |
with template_col:
|
47 |
+
if sport_var == "NBA":
|
48 |
+
template_df = pd.DataFrame(columns=['Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'])
|
49 |
+
elif sport_var == "NFL":
|
50 |
+
template_df = pd.DataFrame(columns=['Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'])
|
51 |
+
elif sport_var == "MLB":
|
52 |
+
template_df = pd.DataFrame(columns=['Player', 'Team', 'Opp', 'Position', 'Salary', 'Median', 'Minutes', 'Own'])
|
53 |
# Add download button for template
|
54 |
st.download_button(
|
55 |
label="Template",
|
function_hold/NBA_functions.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def DK_NBA_ROO_Build(projections_file):
|
2 |
+
total_sims = 1000
|
3 |
+
|
4 |
+
projects_raw = projections_file.copy()
|
5 |
+
projects_raw = projects_raw.replace("", np_nan)
|
6 |
+
dk_df = projects_raw.sort_values(by='Median', ascending=False)
|
7 |
+
|
8 |
+
basic_own_df = dk_df.copy()
|
9 |
+
basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
|
10 |
+
|
11 |
+
def calculate_ownership(df):
|
12 |
+
# Filter the dataframe based on the position
|
13 |
+
frame = df.copy()
|
14 |
+
|
15 |
+
# Calculate Small Field Own%
|
16 |
+
frame['Base Own%'] = np_where(
|
17 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
18 |
+
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
|
19 |
+
frame['Own']
|
20 |
+
)
|
21 |
+
frame['Base Own%'] = np_where(
|
22 |
+
frame['Base Own%'] > 85,
|
23 |
+
85,
|
24 |
+
frame['Base Own%']
|
25 |
+
)
|
26 |
+
|
27 |
+
# Calculate Small Field Own%
|
28 |
+
frame['Small Field Own%'] = np_where(
|
29 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
30 |
+
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
31 |
+
frame['Own']
|
32 |
+
)
|
33 |
+
frame['Small Field Own%'] = np_where(
|
34 |
+
frame['Small Field Own%'] > 85,
|
35 |
+
85,
|
36 |
+
frame['Small Field Own%']
|
37 |
+
)
|
38 |
+
|
39 |
+
# Calculate Large Field Own%
|
40 |
+
frame['Large Field Own%'] = np_where(
|
41 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
42 |
+
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
43 |
+
frame['Own']
|
44 |
+
)
|
45 |
+
frame['Large Field Own%'] = np_where(
|
46 |
+
frame['Large Field Own%'] > 85,
|
47 |
+
85,
|
48 |
+
frame['Large Field Own%']
|
49 |
+
)
|
50 |
+
|
51 |
+
# Calculate Cash Own%
|
52 |
+
frame['Cash Own%'] = np_where(
|
53 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
54 |
+
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
55 |
+
frame['Own']
|
56 |
+
)
|
57 |
+
frame['Cash Own%'] = np_where(
|
58 |
+
frame['Cash Own%'] > 85,
|
59 |
+
85,
|
60 |
+
frame['Cash Own%']
|
61 |
+
)
|
62 |
+
|
63 |
+
return frame
|
64 |
+
|
65 |
+
# Apply the function to each dataframe
|
66 |
+
basic_own_df = calculate_ownership(basic_own_df)
|
67 |
+
|
68 |
+
own_norm_var_reg = 800 / basic_own_df['Own'].sum()
|
69 |
+
own_norm_var_small = 800 / basic_own_df['Small Field Own%'].sum()
|
70 |
+
own_norm_var_large = 800 / basic_own_df['Large Field Own%'].sum()
|
71 |
+
own_norm_var_cash = 800 / basic_own_df['Cash Own%'].sum()
|
72 |
+
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
|
73 |
+
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
|
74 |
+
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
|
75 |
+
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
|
76 |
+
|
77 |
+
basic_own_df['Own'] = np_where(basic_own_df['Own'] > 90, 90, basic_own_df['Own'])
|
78 |
+
|
79 |
+
# Apply the function to each dataframe
|
80 |
+
basic_own_df = calculate_ownership(basic_own_df)
|
81 |
+
|
82 |
+
own_norm_var_reg = 800 / basic_own_df['Own'].sum()
|
83 |
+
own_norm_var_small = 800 / basic_own_df['Small Field Own%'].sum()
|
84 |
+
own_norm_var_large = 800 / basic_own_df['Large Field Own%'].sum()
|
85 |
+
own_norm_var_cash = 800 / basic_own_df['Cash Own%'].sum()
|
86 |
+
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
|
87 |
+
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
|
88 |
+
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
|
89 |
+
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
|
90 |
+
|
91 |
+
own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
|
92 |
+
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
|
93 |
+
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
|
94 |
+
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
|
95 |
+
team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
|
96 |
+
opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))
|
97 |
+
min_dict = dict(zip(basic_own_df.Player, basic_own_df.Minutes))
|
98 |
+
|
99 |
+
flex_file = basic_own_df[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
|
100 |
+
flex_file = flex_file.rename(columns={"Agg": "Median"})
|
101 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
102 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
103 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
104 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
105 |
+
flex_file = flex_file.reset_index(drop=True)
|
106 |
+
hold_file = flex_file.copy()
|
107 |
+
overall_file = flex_file.copy()
|
108 |
+
salary_file = flex_file.copy()
|
109 |
+
|
110 |
+
try:
|
111 |
+
overall_median_gpu = np_array(overall_file['Median'])
|
112 |
+
overall_std_gpu = np_array(overall_file['STD'])
|
113 |
+
overall_salary_gpu = np_array(overall_file['Salary'])
|
114 |
+
|
115 |
+
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
|
116 |
+
salary_array = np_zeros(data_shape)
|
117 |
+
sim_array = np_zeros(data_shape)
|
118 |
+
|
119 |
+
for x in range(0, total_sims):
|
120 |
+
result_gpu = overall_salary_gpu
|
121 |
+
salary_array[:, x] = result_gpu
|
122 |
+
cupy_array = salary_array
|
123 |
+
|
124 |
+
salary_file = salary_file.reset_index(drop=True)
|
125 |
+
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
|
126 |
+
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
|
127 |
+
except:
|
128 |
+
for x in range(0,total_sims):
|
129 |
+
salary_file[x] = salary_file['Salary']
|
130 |
+
salary_check_file = salary_file.copy()
|
131 |
+
|
132 |
+
salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
133 |
+
|
134 |
+
salary_file = salary_file.div(1000)
|
135 |
+
|
136 |
+
try:
|
137 |
+
for x in range(0, total_sims):
|
138 |
+
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
|
139 |
+
sim_array[:, x] = result_gpu
|
140 |
+
add_array = sim_array
|
141 |
+
|
142 |
+
overall_file = overall_file.reset_index(drop=True)
|
143 |
+
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
|
144 |
+
check_file = pd_concat([overall_file, df2], axis=1)
|
145 |
+
except:
|
146 |
+
for x in range(0,total_sims):
|
147 |
+
overall_file[x] = np_random.normal(overall_file['Median'],overall_file['STD'])
|
148 |
+
check_file = overall_file.copy()
|
149 |
+
|
150 |
+
overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
151 |
+
|
152 |
+
players_only = hold_file[['Player']]
|
153 |
+
raw_lineups_file = players_only
|
154 |
+
|
155 |
+
for x in range(0,total_sims):
|
156 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
157 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
158 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
159 |
+
|
160 |
+
players_only=players_only.drop(['Player'], axis=1)
|
161 |
+
|
162 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
163 |
+
salary_5x_check = (overall_file - (salary_file*5))
|
164 |
+
salary_6x_check = (overall_file - (salary_file*6))
|
165 |
+
gpp_check = (overall_file - ((salary_file*5)+10))
|
166 |
+
|
167 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
168 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
169 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
170 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
171 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
172 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
173 |
+
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
|
174 |
+
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
|
175 |
+
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
176 |
+
|
177 |
+
players_only['Player'] = hold_file[['Player']]
|
178 |
+
|
179 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
180 |
+
|
181 |
+
final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
|
182 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
183 |
+
|
184 |
+
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
|
185 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
186 |
+
final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
|
187 |
+
final_Proj['Large_Own'] = final_Proj['Player'].map(large_own_dict)
|
188 |
+
final_Proj['Cash_Own'] = final_Proj['Player'].map(cash_own_dict)
|
189 |
+
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
190 |
+
final_Proj['Team'] = final_Proj['name_team'].map(team_dict)
|
191 |
+
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
192 |
+
final_Proj['CPT_Own'] = final_Proj['Own'] / 6
|
193 |
+
final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
|
194 |
+
final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
|
195 |
+
|
196 |
+
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
|
197 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
198 |
+
|
199 |
+
return final_Proj.copy()
|
200 |
+
|
201 |
+
def FD_NBA_ROO_Build(projections_file):
|
202 |
+
total_sims = 1000
|
203 |
+
|
204 |
+
projects_raw = projections_file.copy()
|
205 |
+
fd_df = projects_raw.sort_values(by='Median', ascending=False)
|
206 |
+
|
207 |
+
basic_own_df = fd_df.copy()
|
208 |
+
basic_own_df['name_team'] = basic_own_df['Player'] + basic_own_df['Position']
|
209 |
+
|
210 |
+
def calculate_ownership(df):
|
211 |
+
# Filter the dataframe based on the position
|
212 |
+
frame = df.copy()
|
213 |
+
|
214 |
+
# Calculate Small Field Own%
|
215 |
+
frame['Base Own%'] = np_where(
|
216 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
217 |
+
frame['Own'] * (5 * (frame['Own'] - (frame['Own'].mean() / 1.5)) / 100) + frame['Own'].mean(),
|
218 |
+
frame['Own']
|
219 |
+
)
|
220 |
+
frame['Base Own%'] = np_where(
|
221 |
+
frame['Base Own%'] > 85,
|
222 |
+
85,
|
223 |
+
frame['Base Own%']
|
224 |
+
)
|
225 |
+
|
226 |
+
# Calculate Small Field Own%
|
227 |
+
frame['Small Field Own%'] = np_where(
|
228 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
229 |
+
frame['Own'] * (6 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
230 |
+
frame['Own']
|
231 |
+
)
|
232 |
+
frame['Small Field Own%'] = np_where(
|
233 |
+
frame['Small Field Own%'] > 85,
|
234 |
+
85,
|
235 |
+
frame['Small Field Own%']
|
236 |
+
)
|
237 |
+
|
238 |
+
# Calculate Large Field Own%
|
239 |
+
frame['Large Field Own%'] = np_where(
|
240 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
241 |
+
frame['Own'] * (2.5 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
242 |
+
frame['Own']
|
243 |
+
)
|
244 |
+
frame['Large Field Own%'] = np_where(
|
245 |
+
frame['Large Field Own%'] > 85,
|
246 |
+
85,
|
247 |
+
frame['Large Field Own%']
|
248 |
+
)
|
249 |
+
|
250 |
+
# Calculate Cash Own%
|
251 |
+
frame['Cash Own%'] = np_where(
|
252 |
+
(frame['Own'] - frame['Own'].mean() >= 0),
|
253 |
+
frame['Own'] * (8 * (frame['Own'] - frame['Own'].mean()) / 100) + frame['Own'].mean(),
|
254 |
+
frame['Own']
|
255 |
+
)
|
256 |
+
frame['Cash Own%'] = np_where(
|
257 |
+
frame['Cash Own%'] > 85,
|
258 |
+
85,
|
259 |
+
frame['Cash Own%']
|
260 |
+
)
|
261 |
+
|
262 |
+
return frame
|
263 |
+
|
264 |
+
# Apply the function to each dataframe
|
265 |
+
basic_own_df = calculate_ownership(basic_own_df)
|
266 |
+
|
267 |
+
own_norm_var_reg = 900 / basic_own_df['Own'].sum()
|
268 |
+
own_norm_var_small = 900 / basic_own_df['Small Field Own%'].sum()
|
269 |
+
own_norm_var_large = 900 / basic_own_df['Large Field Own%'].sum()
|
270 |
+
own_norm_var_cash = 900 / basic_own_df['Cash Own%'].sum()
|
271 |
+
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
|
272 |
+
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
|
273 |
+
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
|
274 |
+
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
|
275 |
+
|
276 |
+
basic_own_df['Own'] = np_where(basic_own_df['Own'] > 90, 90, basic_own_df['Own'])
|
277 |
+
|
278 |
+
# Apply the function to each dataframe
|
279 |
+
basic_own_df = calculate_ownership(basic_own_df)
|
280 |
+
|
281 |
+
own_norm_var_reg = 900 / basic_own_df['Own'].sum()
|
282 |
+
own_norm_var_small = 900 / basic_own_df['Small Field Own%'].sum()
|
283 |
+
own_norm_var_large = 900 / basic_own_df['Large Field Own%'].sum()
|
284 |
+
own_norm_var_cash = 900 / basic_own_df['Cash Own%'].sum()
|
285 |
+
basic_own_df['Own'] = basic_own_df['Own'] * own_norm_var_reg
|
286 |
+
basic_own_df['Small_Own'] = basic_own_df['Small Field Own%'] * own_norm_var_small
|
287 |
+
basic_own_df['Large_Own'] = basic_own_df['Large Field Own%'] * own_norm_var_large
|
288 |
+
basic_own_df['Cash_Own'] = basic_own_df['Cash Own%'] * own_norm_var_cash
|
289 |
+
|
290 |
+
own_dict = dict(zip(basic_own_df.Player, basic_own_df.Own))
|
291 |
+
small_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Small Field Own%']))
|
292 |
+
large_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Large Field Own%']))
|
293 |
+
cash_own_dict = dict(zip(basic_own_df.Player, basic_own_df['Cash Own%']))
|
294 |
+
team_dict = dict(zip(basic_own_df.name_team, basic_own_df.Team))
|
295 |
+
opp_dict = dict(zip(basic_own_df.Player, basic_own_df.Opp))
|
296 |
+
min_dict = dict(zip(basic_own_df.Player, basic_own_df.Minutes))
|
297 |
+
|
298 |
+
flex_file = basic_own_df[['Player', 'Position', 'Salary', 'Median', 'Minutes']]
|
299 |
+
flex_file = flex_file.rename(columns={"Agg": "Median"})
|
300 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
301 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
302 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
303 |
+
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
|
304 |
+
flex_file = flex_file.reset_index(drop=True)
|
305 |
+
hold_file = flex_file.copy()
|
306 |
+
overall_file = flex_file.copy()
|
307 |
+
salary_file = flex_file.copy()
|
308 |
+
|
309 |
+
try:
|
310 |
+
overall_median_gpu = np_array(overall_file['Median'])
|
311 |
+
overall_std_gpu = np_array(overall_file['STD'])
|
312 |
+
overall_salary_gpu = np_array(overall_file['Salary'])
|
313 |
+
|
314 |
+
data_shape = (len(overall_file['Player']), total_sims) # Example: 1000 rows
|
315 |
+
salary_array = np_zeros(data_shape)
|
316 |
+
sim_array = np_zeros(data_shape)
|
317 |
+
|
318 |
+
for x in range(0, total_sims):
|
319 |
+
result_gpu = overall_salary_gpu
|
320 |
+
salary_array[:, x] = result_gpu
|
321 |
+
cupy_array = salary_array
|
322 |
+
|
323 |
+
salary_file = salary_file.reset_index(drop=True)
|
324 |
+
salary_cupy = DataFrame(cupy_array, columns=list(range(0, total_sims)))
|
325 |
+
salary_check_file = pd_concat([salary_file, salary_cupy], axis=1)
|
326 |
+
except:
|
327 |
+
for x in range(0,total_sims):
|
328 |
+
salary_file[x] = salary_file['Salary']
|
329 |
+
salary_check_file = salary_file.copy()
|
330 |
+
|
331 |
+
salary_file=salary_check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
332 |
+
|
333 |
+
salary_file = salary_file.div(1000)
|
334 |
+
|
335 |
+
try:
|
336 |
+
for x in range(0, total_sims):
|
337 |
+
result_gpu = np_random.normal(overall_median_gpu, overall_std_gpu)
|
338 |
+
sim_array[:, x] = result_gpu
|
339 |
+
add_array = sim_array
|
340 |
+
|
341 |
+
overall_file = overall_file.reset_index(drop=True)
|
342 |
+
df2 = DataFrame(add_array, columns=list(range(0, total_sims)))
|
343 |
+
check_file = pd_concat([overall_file, df2], axis=1)
|
344 |
+
except:
|
345 |
+
for x in range(0,total_sims):
|
346 |
+
overall_file[x] = np_random.normal(overall_file['Median'],overall_file['STD'])
|
347 |
+
check_file = overall_file.copy()
|
348 |
+
|
349 |
+
overall_file=check_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
350 |
+
|
351 |
+
players_only = hold_file[['Player']]
|
352 |
+
raw_lineups_file = players_only
|
353 |
+
|
354 |
+
for x in range(0,total_sims):
|
355 |
+
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
|
356 |
+
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
|
357 |
+
players_only[x] = raw_lineups_file[x].rank(ascending=False)
|
358 |
+
|
359 |
+
players_only=players_only.drop(['Player'], axis=1)
|
360 |
+
|
361 |
+
salary_4x_check = (overall_file - (salary_file*4))
|
362 |
+
salary_5x_check = (overall_file - (salary_file*5))
|
363 |
+
salary_6x_check = (overall_file - (salary_file*6))
|
364 |
+
gpp_check = (overall_file - ((salary_file*5)+10))
|
365 |
+
|
366 |
+
players_only['Average_Rank'] = players_only.mean(axis=1)
|
367 |
+
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
|
368 |
+
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
|
369 |
+
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
|
370 |
+
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
|
371 |
+
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
|
372 |
+
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
|
373 |
+
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
|
374 |
+
players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
|
375 |
+
|
376 |
+
players_only['Player'] = hold_file[['Player']]
|
377 |
+
|
378 |
+
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
379 |
+
|
380 |
+
final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
|
381 |
+
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
|
382 |
+
|
383 |
+
final_Proj['name_team'] = final_Proj['Player'] + final_Proj['Position']
|
384 |
+
final_Proj['Own'] = final_Proj['Player'].map(own_dict)
|
385 |
+
final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
|
386 |
+
final_Proj['Large_Own'] = final_Proj['Player'].map(large_own_dict)
|
387 |
+
final_Proj['Cash_Own'] = final_Proj['Player'].map(cash_own_dict)
|
388 |
+
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict)
|
389 |
+
final_Proj['Team'] = final_Proj['name_team'].map(team_dict)
|
390 |
+
final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
|
391 |
+
final_Proj['CPT_Own'] = final_Proj['Own'] / 6
|
392 |
+
final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
|
393 |
+
final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
|
394 |
+
|
395 |
+
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
|
396 |
+
final_Proj['Salary'] = final_Proj['Salary'].astype(int)
|
397 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
398 |
+
|
399 |
+
return final_Proj.copy()
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ streamlit
|
|
2 |
gspread
|
3 |
openpyxl
|
4 |
matplotlib
|
5 |
-
|
6 |
pulp
|
7 |
docker
|
8 |
plotly
|
|
|
2 |
gspread
|
3 |
openpyxl
|
4 |
matplotlib
|
5 |
+
fuzzywuzzy
|
6 |
pulp
|
7 |
docker
|
8 |
plotly
|