Spaces:
Running
Running
James McCool
commited on
Commit
·
2f5846d
1
Parent(s):
2fa1322
Update bimodal distribution sampling in NBA ROO functions to use floor and ceiling values
Browse files
function_hold/NBA_functions.py
CHANGED
@@ -117,6 +117,8 @@ def DK_NBA_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribu
|
|
117 |
salary_file = flex_file.copy()
|
118 |
|
119 |
try:
|
|
|
|
|
120 |
overall_median_gpu = np_array(overall_file['Median'])
|
121 |
overall_std_gpu = np_array(overall_file['STD'])
|
122 |
overall_salary_gpu = np_array(overall_file['Salary'])
|
@@ -154,9 +156,9 @@ def DK_NBA_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribu
|
|
154 |
# Bimodal distribution - mixture of two normal distributions
|
155 |
# First peak centered at 80% of median, second at 120% of median
|
156 |
if np_random.random() < 0.5:
|
157 |
-
result_gpu = np_random.normal(
|
158 |
else:
|
159 |
-
result_gpu = np_random.normal(
|
160 |
else:
|
161 |
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
162 |
|
@@ -340,6 +342,8 @@ def FD_NBA_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribu
|
|
340 |
salary_file = flex_file.copy()
|
341 |
|
342 |
try:
|
|
|
|
|
343 |
overall_median_gpu = np_array(overall_file['Median'])
|
344 |
overall_std_gpu = np_array(overall_file['STD'])
|
345 |
overall_salary_gpu = np_array(overall_file['Salary'])
|
@@ -377,9 +381,9 @@ def FD_NBA_ROO_Build(projections_file, floor_var, ceiling_var, std_var, distribu
|
|
377 |
# Bimodal distribution - mixture of two normal distributions
|
378 |
# First peak centered at 80% of median, second at 120% of median
|
379 |
if np_random.random() < 0.5:
|
380 |
-
result_gpu = np_random.normal(
|
381 |
else:
|
382 |
-
result_gpu = np_random.normal(
|
383 |
else:
|
384 |
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
385 |
|
|
|
117 |
salary_file = flex_file.copy()
|
118 |
|
119 |
try:
|
120 |
+
overall_floor_gpu = np_array(overall_file['Floor'])
|
121 |
+
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
|
122 |
overall_median_gpu = np_array(overall_file['Median'])
|
123 |
overall_std_gpu = np_array(overall_file['STD'])
|
124 |
overall_salary_gpu = np_array(overall_file['Salary'])
|
|
|
156 |
# Bimodal distribution - mixture of two normal distributions
|
157 |
# First peak centered at 80% of median, second at 120% of median
|
158 |
if np_random.random() < 0.5:
|
159 |
+
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
|
160 |
else:
|
161 |
+
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
|
162 |
else:
|
163 |
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
164 |
|
|
|
342 |
salary_file = flex_file.copy()
|
343 |
|
344 |
try:
|
345 |
+
overall_floor_gpu = np_array(overall_file['Floor'])
|
346 |
+
overall_ceiling_gpu = np_array(overall_file['Ceiling'])
|
347 |
overall_median_gpu = np_array(overall_file['Median'])
|
348 |
overall_std_gpu = np_array(overall_file['STD'])
|
349 |
overall_salary_gpu = np_array(overall_file['Salary'])
|
|
|
381 |
# Bimodal distribution - mixture of two normal distributions
|
382 |
# First peak centered at 80% of median, second at 120% of median
|
383 |
if np_random.random() < 0.5:
|
384 |
+
result_gpu = np_random.normal(overall_floor_gpu, overall_std_gpu)
|
385 |
else:
|
386 |
+
result_gpu = np_random.normal(overall_ceiling_gpu, overall_std_gpu)
|
387 |
else:
|
388 |
raise ValueError("Invalid distribution type. Must be 'normal', 'poisson', or 'bimodal'")
|
389 |
|