Spaces:
Running
Running
James McCool
commited on
Commit
·
90b5b34
1
Parent(s):
a70f4bd
Refine MMA distribution settings with dynamic standard deviation and updated knockout/submission odds description
Browse files
app.py
CHANGED
@@ -94,11 +94,14 @@ with tab2:
|
|
94 |
distribution_type_sb = st.selectbox("Select Distribution Type", ['normal', 'poisson', 'bimodal'])
|
95 |
st.info("The distribution type will determine the shape of the distribution of the ROO values. The normal distribution is for more linear projections, the poisson distribution is for stats like HRs and other counting stats, and the bimodal distribution is useful for event oriented outcomes frequent in MMA.")
|
96 |
if sport_var == "MMA":
|
97 |
-
st.info("MMA utilizes imputs from the projections file to determine distribution ranges, floor and ceiling are determined by Knockout
|
98 |
elif sport_var != "MMA":
|
99 |
floor_var_sb = st.number_input("Floor (low end multiplier)", min_value=0.00, max_value=.50, value=.25, step=.01)
|
100 |
ceiling_var_sb = st.number_input("Ceiling (high end multiplier)", min_value=1.50, max_value=3.00, value=2.00, step=.01)
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
if projections_file:
|
104 |
if st.button('Build ROO'):
|
|
|
94 |
distribution_type_sb = st.selectbox("Select Distribution Type", ['normal', 'poisson', 'bimodal'])
|
95 |
st.info("The distribution type will determine the shape of the distribution of the ROO values. The normal distribution is for more linear projections, the poisson distribution is for stats like HRs and other counting stats, and the bimodal distribution is useful for event oriented outcomes frequent in MMA.")
|
96 |
if sport_var == "MMA":
|
97 |
+
st.info("MMA utilizes imputs from the projections file to determine distribution ranges, floor and ceiling are determined by Knockout/Submission Odds.")
|
98 |
elif sport_var != "MMA":
|
99 |
floor_var_sb = st.number_input("Floor (low end multiplier)", min_value=0.00, max_value=.50, value=.25, step=.01)
|
100 |
ceiling_var_sb = st.number_input("Ceiling (high end multiplier)", min_value=1.50, max_value=3.00, value=2.00, step=.01)
|
101 |
+
if sport_var == "MMA":
|
102 |
+
std_var_sb = st.number_input("Standard Deviation (variance within distribution)", min_value=1.00, max_value=5.00, value=3.00, step=.01)
|
103 |
+
elif sport_var != "MMA":
|
104 |
+
std_var_sb = st.number_input("Standard Deviation (variance within distribution)", min_value=1.00, max_value=5.00, value=4.00, step=.01)
|
105 |
|
106 |
if projections_file:
|
107 |
if st.button('Build ROO'):
|