James McCool commited on
Commit
e457ac8
·
1 Parent(s): d580e3f

Update salary multiplier calculations in MMA ROO functions

Browse files
Files changed (1) hide show
  1. function_hold/MMA_functions.py +22 -22
function_hold/MMA_functions.py CHANGED
@@ -208,27 +208,27 @@ def DK_MMA_ROO_Build(projections_file, std_var, distribution_type):
208
 
209
  players_only=players_only.drop(['Player'], axis=1)
210
 
211
- salary_4x_check = (overall_file - (salary_file*4))
212
- salary_5x_check = (overall_file - (salary_file*5))
213
- salary_6x_check = (overall_file - (salary_file*6))
214
- gpp_check = (overall_file - ((salary_file*5)+10))
215
 
216
  players_only['Average_Rank'] = players_only.mean(axis=1)
217
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
218
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
219
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
220
- players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
221
- players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
222
- players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
223
- players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
224
  players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
225
 
226
  players_only['Player'] = hold_file[['Player']]
227
 
228
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
229
 
230
  final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
231
- final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
232
 
233
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
234
  final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
@@ -238,7 +238,7 @@ def DK_MMA_ROO_Build(projections_file, std_var, distribution_type):
238
  final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
239
  final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
240
 
241
- final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
242
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
243
 
244
  return final_Proj.copy()
@@ -435,27 +435,27 @@ def FD_MMA_ROO_Build(projections_file, std_var, distribution_type):
435
 
436
  players_only=players_only.drop(['Player'], axis=1)
437
 
438
- salary_4x_check = (overall_file - (salary_file*4))
439
- salary_5x_check = (overall_file - (salary_file*5))
440
- salary_6x_check = (overall_file - (salary_file*6))
441
- gpp_check = (overall_file - ((salary_file*5)+10))
442
 
443
  players_only['Average_Rank'] = players_only.mean(axis=1)
444
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
445
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
446
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
447
- players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
448
- players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
449
- players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims)
450
- players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims)
451
  players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
452
 
453
  players_only['Player'] = hold_file[['Player']]
454
 
455
- final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
456
 
457
  final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
458
- final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']]
459
 
460
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
461
  final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
@@ -465,7 +465,7 @@ def FD_MMA_ROO_Build(projections_file, std_var, distribution_type):
465
  final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
466
  final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
467
 
468
- final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
469
  final_Proj['Salary'] = final_Proj['Salary'].astype(int)
470
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
471
 
 
208
 
209
  players_only=players_only.drop(['Player'], axis=1)
210
 
211
+ salary_10x_check = (overall_file - (salary_file*10))
212
+ salary_11x_check = (overall_file - (salary_file*11))
213
+ salary_12x_check = (overall_file - (salary_file*12))
214
+ gpp_check = (overall_file - ((salary_file*11)+10))
215
 
216
  players_only['Average_Rank'] = players_only.mean(axis=1)
217
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
218
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
219
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
220
+ players_only['100+%'] = overall_file[overall_file >= 100].count(axis=1)/float(total_sims)
221
+ players_only['10x%'] = salary_10x_check[salary_10x_check >= 1].count(axis=1)/float(total_sims)
222
+ players_only['11x%'] = salary_11x_check[salary_11x_check >= 1].count(axis=1)/float(total_sims)
223
+ players_only['12x%'] = salary_12x_check[salary_12x_check >= 1].count(axis=1)/float(total_sims)
224
  players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
225
 
226
  players_only['Player'] = hold_file[['Player']]
227
 
228
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%']]
229
 
230
  final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
231
+ final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%']]
232
 
233
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
234
  final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
 
238
  final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
239
  final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
240
 
241
+ final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
242
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
243
 
244
  return final_Proj.copy()
 
435
 
436
  players_only=players_only.drop(['Player'], axis=1)
437
 
438
+ salary_10x_check = (overall_file - (salary_file*10))
439
+ salary_11x_check = (overall_file - (salary_file*11))
440
+ salary_12x_check = (overall_file - (salary_file*12))
441
+ gpp_check = (overall_file - ((salary_file*11)+10))
442
 
443
  players_only['Average_Rank'] = players_only.mean(axis=1)
444
  players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
445
  players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
446
  players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
447
+ players_only['100+%'] = overall_file[overall_file >= 100].count(axis=1)/float(total_sims)
448
+ players_only['10x%'] = salary_10x_check[salary_10x_check >= 1].count(axis=1)/float(total_sims)
449
+ players_only['11x%'] = salary_11x_check[salary_11x_check >= 1].count(axis=1)/float(total_sims)
450
+ players_only['12x%'] = salary_12x_check[salary_12x_check >= 1].count(axis=1)/float(total_sims)
451
  players_only['GPP%'] = gpp_check[gpp_check >= 1].count(axis=1)/float(total_sims)
452
 
453
  players_only['Player'] = hold_file[['Player']]
454
 
455
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%']]
456
 
457
  final_Proj = pd_merge(hold_file, final_outcomes, on="Player")
458
+ final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%']]
459
 
460
  final_Proj['Own'] = final_Proj['Player'].map(own_dict)
461
  final_Proj['Small_Own'] = final_Proj['Player'].map(small_own_dict)
 
465
  final_Proj['LevX'] = ((final_Proj[['Top_finish', '6x%', 'Top_5_finish']].mean(axis=1))*100) - final_Proj['Own']
466
  final_Proj['ValX'] = ((final_Proj[['5x%', '6x%']].mean(axis=1))*100) + final_Proj['LevX']
467
 
468
+ final_Proj = final_Proj[['Player', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '100+%', '10x%', '11x%', '12x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
469
  final_Proj['Salary'] = final_Proj['Salary'].astype(int)
470
  final_Proj = final_Proj.sort_values(by='Median', ascending=False)
471