File size: 3,508 Bytes
0841c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import requests

def grab_contest_data(sport, contest_name, contest_id_map, contest_date_map):

    contest_date = contest_date_map[contest_name]
    contest_id = contest_id_map[contest_name]

    raw_url = f'https://dh5nxc6yx3kwy.cloudfront.net/contests/{sport.lower()}/{contest_date}/{contest_id}/'
    data_url = raw_url + 'data/'
    lineups_url = raw_url + 'lineups/'

    def format_lineup_string(lineup_hash, positions):
        """Replaces colons in a lineup hash with sequential positions."""
        # Remove the leading colon and split by the remaining colons
        player_ids = lineup_hash.lstrip(':').split(':')
        
        # Check if the number of IDs matches the number of positions
        if len(player_ids) != len(positions):
            # Handle potential errors - maybe return the original hash or log a warning
            print(f"Warning: Mismatch for hash {lineup_hash}. IDs: {len(player_ids)}, Positions: {len(positions)}")
            return lineup_hash # Or some other error indication

        # Combine positions and player IDs
        combined_parts = [pos + pid for pos, pid in zip(positions, player_ids)]
        
        # Join them into a single string
        return "".join(combined_parts)

    lineups_json = requests.get(lineups_url).json()
    data_json = requests.get(data_url).json()

    lineup_data = []
    player_data = []
    position_inserts = ['1B ', ' 2B ', ' 3B ', ' C ', ' OF ', ' OF ', ' OF ', ' P ', ' P ', ' SS ']

    for players, player_info in data_json['players'].items():
        player_data.append({
            'fullName': player_info['fullName'],
            'playerId': player_info['playerId'],
            'rosterPosition': player_info['rosterPosition'],
            'ownership': player_info['ownership'],
            'actualPoints': player_info['actualPoints']
        })

    players_df = pd.DataFrame(player_data)
    players_df = players_df.sort_values(by='ownership', ascending=False).reset_index(drop=True)
    players_df = players_df.rename(columns={'fullName': 'Player', 'rosterPosition': 'Roster Position', 'ownership': '%Drafted', 'actualPoints': 'FPTS'})
    pid_map = dict(zip(players_df['playerId'].astype(str), players_df['Player']))

    for lineup_hash, lineup_info in lineups_json['lineups'].items():
        lineup_data.append({
            'lineupHash': lineup_hash,
            'points': lineup_info['points'],
            'entryNameList': lineup_info['entryNameList'][0]
        })

    lineups_df = pd.DataFrame(lineup_data)
    lineups_df = lineups_df.sort_values(by='points', ascending=False)
    lineups_df = lineups_df.reset_index()
    lineups_df['index'] = lineups_df.index + 1
    lineups_df['TimeRemaining'] = str(0)
    lineups_df['EntryId'] = lineups_df['lineupHash'].astype(str) + str(lineups_df['index']) + str(lineups_df['entryNameList'])
    lineups_df['lineupHash'] = ':' + lineups_df['lineupHash']
    lineups_df = lineups_df.rename(columns={'index': 'Rank', 'points': 'Points', 'entryNameList': 'EntryName', 'lineupHash': 'Lineup'})
    lineups_df['Lineup'] = lineups_df['Lineup'].apply(lambda x: format_lineup_string(x, position_inserts))
    lineups_df['Lineup'] = lineups_df['Lineup'].replace(pid_map, regex=True)
    lineups_df = lineups_df[['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup']]

    total_data = lineups_df.merge(players_df, how='left', left_index=True, right_index=True)
    
    return total_data.to_csv(f'{contest_name}.csv', index=False)