File size: 12,746 Bytes
d04558f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process

def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var):
    if strength_var == 'Weak':
        dupes_multiplier = .75
        percentile_multiplier = .90
    elif strength_var == 'Average':
        dupes_multiplier = 1.00
        percentile_multiplier = 1.00
    elif strength_var == 'Sharp':
        dupes_multiplier = 1.25
        percentile_multiplier = 1.10
    max_ownership = max(maps_dict['own_map'].values()) / 100
    average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
    if site_var == 'Fanduel':
        if type_var == 'Showdown':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            flex_ownerships = pd.concat([
                portfolio.iloc[:,1].map(maps_dict['own_map']),
                portfolio.iloc[:,2].map(maps_dict['own_map']),
                portfolio.iloc[:,3].map(maps_dict['own_map']),
                portfolio.iloc[:,4].map(maps_dict['own_map'])
            ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        if type_var == 'Classic':
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'own_ratio', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (60000 - portfolio['Own'])) / 100) - ((60000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )

    elif site_var == 'Draftkings':
        if type_var == 'Showdown':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            flex_ownerships = pd.concat([
                portfolio.iloc[:,1].map(maps_dict['own_map']),
                portfolio.iloc[:,2].map(maps_dict['own_map']),
                portfolio.iloc[:,3].map(maps_dict['own_map']),
                portfolio.iloc[:,4].map(maps_dict['own_map']),
                portfolio.iloc[:,5].map(maps_dict['own_map'])
            ])
            flex_rank = flex_ownerships.rank(pct=True)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = portfolio.iloc[:,1].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX2_Own_percent_rank'] = portfolio.iloc[:,2].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX3_Own_percent_rank'] = portfolio.iloc[:,3].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX4_Own_percent_rank'] = portfolio.iloc[:,4].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])
            portfolio['FLEX5_Own_percent_rank'] = portfolio.iloc[:,5].map(maps_dict['own_map']).map(lambda x: flex_rank[flex_ownerships == x].iloc[0])

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']) / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']) / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']) / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']) / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']) / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']) / 100

            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier

            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )
        if type_var == 'Classic':
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']) / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (50000 - portfolio['Own'])) / 100) - ((50000 - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                np.round(portfolio['dupes_calc'], 0) <= 0,
                0, 
                np.round(portfolio['dupes_calc'], 0) - 1
            )

    portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
    portfolio['own_ratio'] = np.where(
        portfolio[own_columns].isin([max_ownership]).any(axis=1),
        portfolio['own_sum'] / portfolio['own_average'],
        (portfolio['own_sum'] - max_ownership) / portfolio['own_average']
    )
    percentile_cut_scalar = portfolio['median'].max()  # Get scalar value
    if type_var == 'Classic':
        own_ratio_nerf = 2
    elif type_var == 'Showdown':
        own_ratio_nerf = 1.5
    portfolio['Finish_percentile'] = portfolio.apply(
        lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2) < .0005 
        else (row['own_ratio'] - own_ratio_nerf) / ((10 * (row['median'] / percentile_cut_scalar)) / 2), 
        axis=1
    )
    
    portfolio['Ref_Proj'] = portfolio['median'].max()
    portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
    portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
    portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
    portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
    max_allowed_win = (1 / Contest_Size) * 5
    portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
    
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier
    portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
    
    portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
    portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5))
    portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
    portfolio['Lineup Edge'] = portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean()
    portfolio = portfolio.drop(columns=dup_count_columns)
    portfolio = portfolio.drop(columns=own_columns)
    portfolio = portfolio.drop(columns=calc_columns)

    return portfolio