James McCool
Remove debug output for salary dictionary in app.py and correct player exposure percentage calculation in create_player_comparison.py
053e7df
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
from rapidfuzz import process, fuzz | |
from collections import Counter | |
from pymongo.mongo_client import MongoClient | |
from pymongo.server_api import ServerApi | |
from datetime import datetime | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client['Contest_Information'] | |
return db | |
def grab_contest_names(db, sport, type): | |
if type == 'Classic': | |
db_type = 'reg' | |
elif type == 'Showdown': | |
db_type = 'sd' | |
collection = db[f'{sport}_{db_type}_contest_info'] | |
cursor = collection.find() | |
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) | |
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False)) | |
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d') | |
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date'] | |
return contest_names, curr_info | |
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map): | |
if type == 'Classic': | |
db_type = 'reg' | |
elif type == 'Showdown': | |
db_type = 'showdown' | |
collection = db[f'{sport}_{db_type}_player_info'] | |
cursor = collection.find() | |
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) | |
player_info = player_info[player_info['Contest Date'] == contest_date] | |
player_info = player_info.rename(columns={'Display Name': 'Player'}) | |
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first') | |
info_maps = { | |
'position_dict': dict(zip(player_info['Player'], player_info['Position'])), | |
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])), | |
'team_dict': dict(zip(player_info['Player'], player_info['Team'])), | |
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])), | |
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS'])) | |
} | |
return player_info, info_maps | |
db = init_conn() | |
## import global functions | |
from global_func.load_contest_file import load_contest_file | |
from global_func.create_player_exposures import create_player_exposures | |
from global_func.create_stack_exposures import create_stack_exposures | |
from global_func.create_stack_size_exposures import create_stack_size_exposures | |
from global_func.create_general_exposures import create_general_exposures | |
from global_func.grab_contest_data import grab_contest_data | |
from global_func.create_player_comparison import create_player_comparison | |
def is_valid_input(file): | |
if isinstance(file, pd.DataFrame): | |
return not file.empty | |
else: | |
return file is not None # For Streamlit uploader objects | |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'} | |
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'} | |
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"]) | |
with tab1: | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button('Clear data', key='reset1'): | |
st.session_state.clear() | |
sport_options, date_options = st.columns(2) | |
parse_type = 'Manual' | |
with sport_options: | |
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF', 'NBA', 'NHL', 'WNBA'], key='sport_select') | |
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var') | |
try: | |
contest_names, curr_info = grab_contest_names(db, sport_select, type_var) | |
except: | |
st.error("No contests found for this sport and/or game type") | |
st.stop() | |
with date_options: | |
date_list = curr_info['Date'].sort_values(ascending=False).unique() | |
# date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')] | |
date_select = st.selectbox("Select Date", date_list, key='date_select') | |
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d') | |
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True) | |
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID'])) | |
date_select = date_select.replace('-', '') | |
date_select2 = date_select2.replace('-', '') | |
contest_name_var = st.selectbox("Select Contest to load", name_parse) | |
if parse_type == 'DB Search': | |
if 'Contest_file_helper' in st.session_state: | |
del st.session_state['Contest_file_helper'] | |
if 'Contest_file' in st.session_state: | |
del st.session_state['Contest_file'] | |
if 'Contest_file' not in st.session_state: | |
if st.button('Load Contest Data', key='load_contest_data'): | |
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) | |
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2) | |
else: | |
pass | |
with col2: | |
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/, or you can initiate a download with this link: https://www.draftkings.com/contest/exportfullstandingscsv/{contest_id_map[contest_name_var]}") | |
if parse_type == 'Manual': | |
if 'Contest_file_helper' in st.session_state: | |
del st.session_state['Contest_file_helper'] | |
if 'Contest_file' in st.session_state: | |
del st.session_state['Contest_file'] | |
if 'Contest_file' not in st.session_state: | |
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) | |
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) | |
try: | |
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload']) | |
except: | |
st.warning('Please upload a Contest CSV') | |
else: | |
pass | |
if 'Contest_file' in st.session_state: | |
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select) | |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all') | |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True) | |
if st.session_state['Contest'] is not None: | |
st.success('Contest file loaded successfully!') | |
st.dataframe(st.session_state['Contest'].head(100)) | |
if 'Contest_file' in st.session_state: | |
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'])) | |
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS'])) | |
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict'] | |
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict'] | |
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict'] | |
with tab2: | |
excluded_cols = ['BaseName', 'EntryCount'] | |
if 'Contest' in st.session_state and 'display_contest_info' not in st.session_state: | |
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols] | |
print(st.session_state['player_columns']) | |
for col in st.session_state['player_columns']: | |
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip() | |
# Create mapping dictionaries | |
st.session_state['map_dict'] = { | |
'pos_map': st.session_state['pos_dict'], | |
'team_map': st.session_state['team_dict'], | |
'salary_map': st.session_state['salary_dict'], | |
'own_map': st.session_state['ownership_dict'], | |
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True))) | |
} | |
# Create a copy of the dataframe for calculations | |
working_df = st.session_state['Contest'].copy() | |
if type_var == 'Classic': | |
working_df['stack'] = working_df.apply( | |
lambda row: Counter( | |
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']] | |
if st.session_state['map_dict']['team_map'].get(player, '') != '' | |
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '', | |
axis=1 | |
) | |
working_df['stack_size'] = working_df.apply( | |
lambda row: Counter( | |
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']] | |
if st.session_state['map_dict']['team_map'].get(player, '') != '' | |
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '', | |
axis=1 | |
) | |
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1) | |
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1) | |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1) | |
print("Sample row values:") | |
print(working_df.iloc[0][st.session_state['player_columns']]) | |
print("Sample salary calculation:") | |
sample_row = working_df.iloc[0] | |
sample_salary = sum(st.session_state['salary_dict'].get(player, 0) for player in sample_row[st.session_state['player_columns']]) | |
print(f"Sample salary: {sample_salary}") | |
print("Individual player salaries:") | |
for player in sample_row[st.session_state['player_columns']]: | |
salary = st.session_state['salary_dict'].get(player, 0) | |
print(f" {player}: {salary}") | |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply( | |
lambda row: ','.join(sorted(row.values)), | |
axis=1 | |
) | |
working_df['dupes'] = working_df.groupby('sorted').transform('size') | |
working_df['uniques'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] == 1).sum() | |
).reindex(working_df['BaseName']).values | |
working_df['under_5'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] <= 5).sum() | |
).reindex(working_df['BaseName']).values | |
working_df['under_10'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] <= 10).sum() | |
).reindex(working_df['BaseName']).values | |
working_df = working_df.reset_index() | |
working_df['percentile_finish'] = working_df['index'].rank(pct=True) | |
working_df['finish'] = working_df['index'] | |
working_df = working_df.drop(['sorted', 'index'], axis=1) | |
elif type_var == 'Showdown': | |
working_df['stack'] = working_df.apply( | |
lambda row: Counter( | |
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:] | |
if st.session_state['map_dict']['team_map'].get(player, '') != '' | |
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '', | |
axis=1 | |
) | |
working_df['stack_size'] = working_df.apply( | |
lambda row: Counter( | |
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:] | |
if st.session_state['map_dict']['team_map'].get(player, '') != '' | |
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '', | |
axis=1 | |
) | |
if sport_select == 'GOLF': | |
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row), axis=1) | |
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1) | |
else: | |
# Modified salary calculation with 1.5x multiplier for first player | |
working_df['salary'] = working_df.apply( | |
lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) + | |
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]), | |
axis=1 | |
) | |
# Modified actual_fpts calculation with 1.5x multiplier for first player | |
working_df['actual_fpts'] = working_df.apply( | |
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) + | |
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]), | |
axis=1 | |
) | |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) | |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply( | |
lambda row: ','.join(sorted(row.values)), | |
axis=1 | |
) | |
working_df['dupes'] = working_df.groupby('sorted').transform('size') | |
working_df['uniques'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] == 1).sum() | |
).reindex(working_df['BaseName']).values | |
working_df['under_5'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] <= 5).sum() | |
).reindex(working_df['BaseName']).values | |
working_df['under_10'] = working_df.groupby('BaseName').apply( | |
lambda x: (x['dupes'] <= 10).sum() | |
).reindex(working_df['BaseName']).values | |
working_df = working_df.reset_index() | |
working_df['percentile_finish'] = working_df['index'].rank(pct=True) | |
working_df['finish'] = working_df['index'] | |
working_df = working_df.drop(['sorted', 'index'], axis=1) | |
# working_df['stack_size'] = working_df['stack_size'].fillna(1).astype(int) | |
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns']) | |
st.session_state['field_stack_frame'] = create_stack_exposures(working_df) | |
st.session_state['display_contest_info'] = working_df.copy() | |
st.session_state['contest_info_reset'] = working_df.copy() | |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K')) | |
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values | |
if 'display_contest_info' in st.session_state: | |
with st.expander("Info and filters"): | |
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'") | |
clear_col, reset_col, blank_col = st.columns([1, 1, 7]) | |
with clear_col: | |
if st.button('Clear data', key='reset3'): | |
st.session_state.clear() | |
with reset_col: | |
if st.button('Reset filters', key='reset4'): | |
st.session_state['entry_parse_var'] = 'All' | |
st.session_state['entry_names'] = [] | |
st.session_state['low_entries_var'] = 1 | |
st.session_state['high_entries_var'] = 150 | |
st.session_state['stack_parse_var'] = 'All' | |
st.session_state['stack_names'] = [] | |
st.session_state['stack_size_parse_var'] = 'All' | |
st.session_state['stack_size_names'] = [] | |
st.session_state['player_parse_var'] = 'All' | |
st.session_state['player_names'] = [] | |
st.session_state['remove_var'] = 'No' | |
st.session_state['remove_names'] = [] | |
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy() | |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K')) | |
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values | |
with st.form(key='filter_form'): | |
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6) | |
with users_var: | |
st.session_state['entry_parse_var'] = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific']) | |
st.session_state['entry_names'] = st.multiselect("Select players", options=st.session_state['entry_list'], default=[]) | |
with entries_var: | |
st.session_state['low_entries_var'] = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1) | |
st.session_state['high_entries_var'] = st.number_input("High end of entries range", min_value=0, max_value=150, value=150) | |
with stack_var: | |
st.session_state['stack_parse_var'] = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific']) | |
st.session_state['stack_names'] = st.multiselect("Select teams", options=st.session_state['display_contest_info']['stack'].unique(), default=[]) | |
with stack_size_var: | |
st.session_state['stack_size_parse_var'] = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific']) | |
st.session_state['stack_size_names'] = st.multiselect("Select stack sizes", options=st.session_state['display_contest_info']['stack_size'].unique(), default=[]) | |
with player_var: | |
st.session_state['player_parse_var'] = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific']) | |
st.session_state['player_names'] = st.multiselect("Select players to lock", options=st.session_state['unique_players'], default=[]) | |
with remove_var: | |
st.session_state['remove_var'] = st.selectbox("Do you want to remove a specific player(s)?", ['No', 'Yes']) | |
st.session_state['remove_names'] = st.multiselect("Select players to remove", options=st.session_state['unique_players'], default=[]) | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
if st.session_state['entry_parse_var'] == 'Specific' and st.session_state['entry_names']: | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'].isin(st.session_state['entry_names'])] | |
if st.session_state['stack_parse_var'] == 'Specific' and st.session_state['stack_names']: | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack'].isin(st.session_state['stack_names'])] | |
if st.session_state['stack_size_parse_var'] == 'Specific' and st.session_state['stack_size_names']: | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack_size'].isin(st.session_state['stack_size_names'])] | |
if st.session_state['player_parse_var'] == 'Specific' and st.session_state['player_names']: | |
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: all(player in row.values for player in st.session_state['player_names']), axis=1) | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][mask] | |
if st.session_state['remove_var'] == 'Yes' and st.session_state['remove_names']: | |
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: any(player in row.values for player in st.session_state['remove_names']), axis=1) | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][~mask] | |
if st.session_state['low_entries_var'] and st.session_state['high_entries_var']: | |
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['EntryCount'].between(st.session_state['low_entries_var'], st.session_state['high_entries_var'])] | |
if 'display_contest_info' in st.session_state: | |
# Initialize pagination in session state if not exists | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 1 | |
# Calculate total pages | |
rows_per_page = 500 | |
total_rows = len(st.session_state['display_contest_info']) | |
total_pages = (total_rows + rows_per_page - 1) // rows_per_page | |
# Create pagination controls in a single row | |
pagination_cols = st.columns([4, 1, 1, 1, 4]) | |
with pagination_cols[1]: | |
if st.button(f"Previous Page"): | |
if st.session_state['current_page'] > 1: | |
st.session_state.current_page -= 1 | |
else: | |
st.session_state.current_page = 1 | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
with pagination_cols[3]: | |
if st.button(f"Next Page"): | |
st.session_state.current_page += 1 | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
# Calculate start and end indices for current page | |
start_idx = (st.session_state.current_page - 1) * rows_per_page | |
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows) | |
st.dataframe( | |
st.session_state['display_contest_info'].iloc[start_idx:end_idx].style | |
.background_gradient(axis=0) | |
.background_gradient(cmap='RdYlGn') | |
.format(precision=2), | |
height=500, | |
use_container_width=True, | |
hide_index=True | |
) | |
else: | |
st.stop() | |
if 'Contest' in st.session_state: | |
with st.container(): | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info']) | |
with tab1: | |
with st.form(key='player_info_pos_form'): | |
col1, col2 = st.columns(2) | |
with col1: | |
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var') | |
with col2: | |
if sport_select == 'MLB': | |
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select') | |
elif sport_select == 'NBA': | |
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_select') | |
elif sport_select == 'WNBA': | |
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF'], key='pos_select') | |
elif sport_select == 'NFL': | |
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_select') | |
elif sport_select == 'NHL': | |
pos_select = st.multiselect("Select your position(s)", ['W', 'C', 'D', 'G'], key='pos_select') | |
elif sport_select == 'MMA': | |
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select') | |
elif sport_select == 'GOLF': | |
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select') | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
if pos_var == 'Specific': | |
pos_select = pos_select | |
else: | |
pos_select = None | |
with st.form(key='player_exp_comp_form'): | |
col1, col2 = st.columns(2) | |
with col1: | |
comp_player_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_player_var') | |
with col2: | |
comp_player_select = st.multiselect("Select players to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_player_select') | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
if comp_player_var == 'No': | |
comp_player_select = None | |
else: | |
comp_player_select = comp_player_select | |
if comp_player_var == 'Yes': | |
player_exp_comp = create_player_comparison(st.session_state['display_contest_info'], st.session_state['player_columns'], comp_player_select) | |
st.dataframe(player_exp_comp.style.background_gradient(cmap='RdYlGn', axis=1).format(formatter='{:.2%}', subset=player_exp_comp.select_dtypes(include=['number']).columns), hide_index=True) | |
else: | |
if st.session_state['entry_parse_var'] == 'All': | |
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns']) | |
hold_frame = st.session_state['player_frame'].copy() | |
if sport_select == 'GOLF': | |
hold_frame['Pos'] = 'G' | |
else: | |
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map']) | |
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) | |
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) | |
if pos_select: | |
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) | |
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] | |
st.dataframe(st.session_state['player_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'], st.session_state['entry_names']) | |
hold_frame = st.session_state['player_frame'].copy() | |
if sport_select == 'GOLF': | |
hold_frame['Pos'] = 'G' | |
else: | |
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map']) | |
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) | |
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) | |
if pos_select: | |
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) | |
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] | |
st.dataframe(st.session_state['player_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab2: | |
if st.session_state['entry_parse_var'] == 'All': | |
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info']) | |
st.dataframe(st.session_state['stack_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) | |
st.dataframe(st.session_state['stack_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab3: | |
if st.session_state['entry_parse_var'] == 'All': | |
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info']) | |
st.dataframe(st.session_state['stack_size_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) | |
st.dataframe(st.session_state['stack_size_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab4: | |
if st.session_state['entry_parse_var'] == 'All': | |
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info']) | |
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) | |
else: | |
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) | |
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) | |
with tab5: | |
with st.form(key='dupe_form'): | |
col1, col2 = st.columns(2) | |
with col1: | |
user_dupe_var = st.selectbox("Which usage(s) would you like to view?", ['All', 'Specific'], key='user_dupe_var') | |
with col2: | |
user_dupe_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_dupe_select') | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
if user_dupe_var == 'Specific': | |
user_dupe_select = user_dupe_select | |
else: | |
user_dupe_select = None | |
if 'duplication_frame' not in st.session_state: | |
dupe_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']] | |
dupe_frame['average_dupes'] = dupe_frame['dupes'].mean() | |
dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount'] | |
dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount'] | |
dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount'] | |
dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first') | |
st.session_state['duplication_frame'] = dupe_frame.sort_values(by='EntryCount', ascending=False) | |
if user_dupe_var == 'Specific': | |
st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)] | |
# Initialize pagination in session state if not exists | |
if 'dupe_page' not in st.session_state: | |
st.session_state.dupe_page = 1 | |
# Calculate total pages | |
rows_per_page = 50 | |
total_rows = len(st.session_state['duplication_frame']) | |
total_pages = (total_rows + rows_per_page - 1) // rows_per_page | |
# Create pagination controls in a single row | |
pagination_cols = st.columns([4, 1, 1, 1, 4]) | |
with pagination_cols[1]: | |
if st.button(f"Previous Dupes Page"): | |
if st.session_state['dupe_page'] > 1: | |
st.session_state.dupe_page -= 1 | |
with pagination_cols[3]: | |
if st.button(f"Next Dupes Page"): | |
st.session_state.dupe_page += 1 | |
# Calculate start and end indices for current page | |
start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page | |
end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows) | |
st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style. | |
background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0). | |
background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0). | |
format(dupe_format, precision=2), hide_index=True) |