|
import pandas as pd |
|
import requests |
|
|
|
def grab_contest_data(sport, contest_name, contest_id_map, contest_date_map): |
|
|
|
contest_date = contest_date_map[contest_name] |
|
contest_id = contest_id_map[contest_name] |
|
|
|
raw_url = f'https://dh5nxc6yx3kwy.cloudfront.net/contests/{sport.lower()}/{contest_date}/{contest_id}/' |
|
data_url = raw_url + 'data/' |
|
lineups_url = raw_url + 'lineups/' |
|
|
|
def format_lineup_string(lineup_hash, positions): |
|
"""Replaces colons in a lineup hash with sequential positions.""" |
|
|
|
player_ids = lineup_hash.lstrip(':').split(':') |
|
|
|
|
|
if len(player_ids) != len(positions): |
|
|
|
print(f"Warning: Mismatch for hash {lineup_hash}. IDs: {len(player_ids)}, Positions: {len(positions)}") |
|
return lineup_hash |
|
|
|
|
|
combined_parts = [pos + pid for pos, pid in zip(positions, player_ids)] |
|
|
|
|
|
return "".join(combined_parts) |
|
|
|
lineups_json = requests.get(lineups_url).json() |
|
data_json = requests.get(data_url).json() |
|
|
|
lineup_data = [] |
|
player_data = [] |
|
position_inserts = ['1B ', ' 2B ', ' 3B ', ' C ', ' OF ', ' OF ', ' OF ', ' P ', ' P ', ' SS '] |
|
|
|
for players, player_info in data_json['players'].items(): |
|
player_data.append({ |
|
'fullName': player_info['fullName'], |
|
'playerId': player_info['playerId'], |
|
'rosterPosition': player_info['rosterPosition'], |
|
'ownership': player_info['ownership'], |
|
'actualPoints': player_info['actualPoints'] |
|
}) |
|
|
|
players_df = pd.DataFrame(player_data) |
|
players_df = players_df.sort_values(by='ownership', ascending=False).reset_index(drop=True) |
|
players_df = players_df.rename(columns={'fullName': 'Player', 'rosterPosition': 'Roster Position', 'ownership': '%Drafted', 'actualPoints': 'FPTS'}) |
|
pid_map = dict(zip(players_df['playerId'].astype(str), players_df['Player'])) |
|
|
|
for lineup_hash, lineup_info in lineups_json['lineups'].items(): |
|
lineup_data.append({ |
|
'lineupHash': lineup_hash, |
|
'points': lineup_info['points'], |
|
'entryNameList': lineup_info['entryNameList'][0] |
|
}) |
|
|
|
lineups_df = pd.DataFrame(lineup_data) |
|
lineups_df = lineups_df.sort_values(by='points', ascending=False) |
|
lineups_df = lineups_df.reset_index() |
|
lineups_df['index'] = lineups_df.index + 1 |
|
lineups_df['TimeRemaining'] = str(0) |
|
lineups_df['EntryId'] = lineups_df['index'].astype(str) + lineups_df['entryNameList'].astype(str) |
|
lineups_df['lineupHash'] = ':' + lineups_df['lineupHash'] |
|
lineups_df = lineups_df.rename(columns={'index': 'Rank', 'points': 'Points', 'entryNameList': 'EntryName', 'lineupHash': 'Lineup'}) |
|
lineups_df['EntryName'] = lineups_df['EntryName'] + ' (1/1)' |
|
lineups_df['Lineup'] = lineups_df['Lineup'].apply(lambda x: format_lineup_string(x, position_inserts)) |
|
lineups_df['Lineup'] = lineups_df['Lineup'].replace(pid_map, regex=True) |
|
lineups_df = lineups_df[['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup']] |
|
|
|
total_data = lineups_df.merge(players_df, how='left', left_index=True, right_index=True) |
|
|
|
return total_data |