DFS_Contest_Analyzer / global_func /load_contest_file.py
James McCool
Enhance contest file loading and player data calculations
691ab8e
raw
history blame
3.18 kB
import streamlit as st
import numpy as np
import pandas as pd
import time
from fuzzywuzzy import process
## import global functions
from global_func.clean_player_name import clean_player_name
def load_contest_file(upload, sport):
pos_values = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF']
if upload is not None:
try:
if upload.name.endswith('.csv'):
raw_df = pd.read_csv(upload)
elif upload.name.endswith(('.xls', '.xlsx')):
raw_df = pd.read_excel(upload)
else:
st.error('Please upload either a CSV or Excel file')
return None
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']]
df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'})
# Split EntryName into base name and entry count
df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True)
df['EntryCount'] = df['EntryName'].str.extract(r'\((\d+/\d+)\)')
df['EntryCount'] = df['EntryCount'].fillna('1/1') # Default to 1/1 if no entry count
# Split the lineup string by replacing position indicators with commas
# We need to ensure we only replace position indicators that are at the start of a player entry
# and not those that might appear within player names
df['Lineup'] = df['Lineup'].str.replace(r'\b(' + '|'.join(pos_values) + r')\b', r'\1,', regex=True)
# Split into individual columns and remove position indicators
# First, determine the maximum number of players in any lineup
max_players = int(df['Lineup'].str.split(',').str.len().max())
if max_players <= 0:
st.error('No valid lineups found in the uploaded file')
return None
# Create columns for each player
for i in range(1, max_players):
df[i] = df['Lineup'].str.split(',').str[i].str.strip()
# Remove position indicators from the end of each entry
df[i] = df[i].str.replace(r'\s+(' + '|'.join(pos_values) + r')$', '', regex=True)
if sport == 'MLB':
df = df.rename(columns={1: '1B', 2: '2B', 3: '3B', 4: 'C', 5: 'OF1', 6: 'OF2', 7: 'OF3', 8: 'SP1', 9: 'SP2', 10: 'SS'})
ownership_dict = dict(zip(df['Player'], df['Own']))
fpts_dict = dict(zip(df['Player'], df['FPTS']))
cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS'])
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
entry_list = list(set(df['BaseName']))
entry_list.sort()
return cleaned_df, ownership_dict, fpts_dict, entry_list
except Exception as e:
st.error(f'Error loading file: {str(e)}')
return None
return None