James McCool
Refactor player information handling in app.py by removing redundant error handling for contest ID filtering. Streamlined session state management for salary, team, and position dictionaries to enhance code clarity and maintain functionality.
5b9c82c
raw
history blame
21.5 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime
def init_conn():
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client['Contest_Information']
return db
def grab_contest_names(db, sport, type):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'sd'
collection = db[f'{sport}_{db_type}_contest_info']
cursor = collection.find()
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
contest_names = curr_info['Contest Name']
contest_id_map = dict(zip(curr_info['Contest Name'], curr_info['Contest ID']))
return contest_names, contest_id_map, curr_info
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_player_info']
cursor = collection.find()
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
player_info = player_info[player_info['Contest Date'] == contest_date]
player_info = player_info.rename(columns={'Display Name': 'Player'})
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')
info_maps = {
'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
}
return player_info, info_maps
db = init_conn()
## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data
def is_valid_input(file):
if isinstance(file, pd.DataFrame):
return not file.empty
else:
return file is not None # For Streamlit uploader objects
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
col1, col2 = st.columns(2)
with col1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
search_options, sport_options, date_options = st.columns(3)
with search_options:
parse_type = st.selectbox("Manual upload or DB search?", ['DB Search', 'Manual'], key='parse_type')
with sport_options:
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF'], key='sport_select')
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')
contest_names, contest_id_map, curr_info = grab_contest_names(db, sport_select, type_var)
with date_options:
date_list = curr_info['Date'].sort_values(ascending=False).unique()
date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
date_select = st.selectbox("Select Date", date_list, key='date_select')
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
date_select = date_select.replace('-', '')
date_select2 = date_select2.replace('-', '')
contest_name_var = st.selectbox("Select Contest to load", name_parse)
if parse_type == 'DB Search':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
if st.button('Load Contest Data', key='load_contest_data'):
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2)
else:
pass
with col2:
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/")
if parse_type == 'Manual':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
try:
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
except:
st.warning('Please upload a Contest CSV')
else:
pass
if 'Contest_file' in st.session_state:
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select)
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
if st.session_state['Contest'] is not None:
st.success('Contest file loaded successfully!')
st.dataframe(st.session_state['Contest'].head(100))
if 'Contest_file' in st.session_state:
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
with tab2:
excluded_cols = ['BaseName', 'EntryCount']
if 'Contest' in st.session_state:
player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
for col in player_columns:
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str)
# Create mapping dictionaries
map_dict = {
'pos_map': st.session_state['pos_dict'],
'team_map': st.session_state['team_dict'],
'salary_map': st.session_state['salary_dict'],
'own_map': st.session_state['ownership_dict'],
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
}
# Create a copy of the dataframe for calculations
working_df = st.session_state['Contest'].copy()
if type_var == 'Classic':
working_df['stack'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[4:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[4:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
axis=1
)
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[player_columns].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
elif type_var == 'Showdown':
working_df['stack'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[2:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
map_dict['team_map'].get(player, '') for player in row[2:]
if map_dict['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
# Modified salary calculation with 1.5x multiplier for first player
working_df['salary'] = working_df.apply(
lambda row: (map_dict['salary_map'].get(row[2], 0) * 1.5) +
sum(map_dict['salary_map'].get(player, 0) for player in row[3:]),
axis=1
)
# Modified actual_fpts calculation with 1.5x multiplier for first player
working_df['actual_fpts'] = working_df.apply(
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
axis=1
)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[player_columns].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns)
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
with st.expander("Info and filters"):
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with st.form(key='filter_form'):
entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific'])
entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
submitted = st.form_submit_button("Submit")
if submitted:
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Apply entry name filter if specific entries are selected
if entry_parse_var == 'Specific' and entry_names:
working_df = working_df[working_df['BaseName'].isin(entry_names)]
# Initialize pagination in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Calculate total pages
rows_per_page = 500
total_rows = len(working_df)
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Page"):
if st.session_state['current_page'] > 1:
st.session_state.current_page -= 1
else:
st.session_state.current_page = 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
with pagination_cols[3]:
if st.button(f"Next Page"):
st.session_state.current_page += 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
st.dataframe(
working_df.iloc[start_idx:end_idx].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=500,
use_container_width=True,
hide_index=True
)
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info'])
with tab1:
col1, col2 = st.columns(2)
with col1:
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var')
with col2:
if pos_var == 'Specific':
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
else:
pos_select = None
if entry_parse_var == 'All':
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab2:
if entry_parse_var == 'All':
st.session_state['stack_frame'] = create_stack_exposures(working_df)
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names)
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab3:
if entry_parse_var == 'All':
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df)
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names)
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab4:
if entry_parse_var == 'All':
st.session_state['general_frame'] = create_general_exposures(working_df)
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
else:
st.session_state['general_frame'] = create_general_exposures(working_df, entry_names)
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)