James McCool
Refactor player information handling in app.py by removing redundant error handling for contest ID filtering. Streamlined session state management for salary, team, and position dictionaries to enhance code clarity and maintain functionality.
5b9c82c
import streamlit as st | |
st.set_page_config(layout="wide") | |
import numpy as np | |
import pandas as pd | |
from rapidfuzz import process, fuzz | |
from collections import Counter | |
from pymongo.mongo_client import MongoClient | |
from pymongo.server_api import ServerApi | |
from datetime import datetime | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client['Contest_Information'] | |
return db | |
def grab_contest_names(db, sport, type): | |
if type == 'Classic': | |
db_type = 'reg' | |
elif type == 'Showdown': | |
db_type = 'sd' | |
collection = db[f'{sport}_{db_type}_contest_info'] | |
cursor = collection.find() | |
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) | |
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False)) | |
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d') | |
contest_names = curr_info['Contest Name'] | |
contest_id_map = dict(zip(curr_info['Contest Name'], curr_info['Contest ID'])) | |
return contest_names, contest_id_map, curr_info | |
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map): | |
if type == 'Classic': | |
db_type = 'reg' | |
elif type == 'Showdown': | |
db_type = 'showdown' | |
collection = db[f'{sport}_{db_type}_player_info'] | |
cursor = collection.find() | |
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) | |
player_info = player_info[player_info['Contest Date'] == contest_date] | |
player_info = player_info.rename(columns={'Display Name': 'Player'}) | |
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first') | |
info_maps = { | |
'position_dict': dict(zip(player_info['Player'], player_info['Position'])), | |
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])), | |
'team_dict': dict(zip(player_info['Player'], player_info['Team'])), | |
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])), | |
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS'])) | |
} | |
return player_info, info_maps | |
db = init_conn() | |
## import global functions | |
from global_func.load_contest_file import load_contest_file | |
from global_func.create_player_exposures import create_player_exposures | |
from global_func.create_stack_exposures import create_stack_exposures | |
from global_func.create_stack_size_exposures import create_stack_size_exposures | |
from global_func.create_general_exposures import create_general_exposures | |
from global_func.grab_contest_data import grab_contest_data | |
def is_valid_input(file): | |
if isinstance(file, pd.DataFrame): | |
return not file.empty | |
else: | |
return file is not None # For Streamlit uploader objects | |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'} | |
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"]) | |
with tab1: | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button('Clear data', key='reset1'): | |
st.session_state.clear() | |
search_options, sport_options, date_options = st.columns(3) | |
with search_options: | |
parse_type = st.selectbox("Manual upload or DB search?", ['DB Search', 'Manual'], key='parse_type') | |
with sport_options: | |
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF'], key='sport_select') | |
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var') | |
contest_names, contest_id_map, curr_info = grab_contest_names(db, sport_select, type_var) | |
with date_options: | |
date_list = curr_info['Date'].sort_values(ascending=False).unique() | |
date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')] | |
date_select = st.selectbox("Select Date", date_list, key='date_select') | |
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d') | |
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True) | |
date_select = date_select.replace('-', '') | |
date_select2 = date_select2.replace('-', '') | |
contest_name_var = st.selectbox("Select Contest to load", name_parse) | |
if parse_type == 'DB Search': | |
if 'Contest_file_helper' in st.session_state: | |
del st.session_state['Contest_file_helper'] | |
if 'Contest_file' in st.session_state: | |
del st.session_state['Contest_file'] | |
if 'Contest_file' not in st.session_state: | |
if st.button('Load Contest Data', key='load_contest_data'): | |
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) | |
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2) | |
else: | |
pass | |
with col2: | |
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/") | |
if parse_type == 'Manual': | |
if 'Contest_file_helper' in st.session_state: | |
del st.session_state['Contest_file_helper'] | |
if 'Contest_file' in st.session_state: | |
del st.session_state['Contest_file'] | |
if 'Contest_file' not in st.session_state: | |
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) | |
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map) | |
try: | |
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload']) | |
except: | |
st.warning('Please upload a Contest CSV') | |
else: | |
pass | |
if 'Contest_file' in st.session_state: | |
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select) | |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all') | |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True) | |
if st.session_state['Contest'] is not None: | |
st.success('Contest file loaded successfully!') | |
st.dataframe(st.session_state['Contest'].head(100)) | |
if 'Contest_file' in st.session_state: | |
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'])) | |
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS'])) | |
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict'] | |
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict'] | |
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict'] | |
with tab2: | |
excluded_cols = ['BaseName', 'EntryCount'] | |
if 'Contest' in st.session_state: | |
player_columns = [col for col in st.session_state['Contest'].columns if col not in excluded_cols] | |
for col in player_columns: | |
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str) | |
# Create mapping dictionaries | |
map_dict = { | |
'pos_map': st.session_state['pos_dict'], | |
'team_map': st.session_state['team_dict'], | |
'salary_map': st.session_state['salary_dict'], | |
'own_map': st.session_state['ownership_dict'], | |
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True))) | |
} | |
# Create a copy of the dataframe for calculations | |
working_df = st.session_state['Contest'].copy() | |
if type_var == 'Classic': | |
working_df['stack'] = working_df.apply( | |
lambda row: Counter( | |
map_dict['team_map'].get(player, '') for player in row[4:] | |
if map_dict['team_map'].get(player, '') != '' | |
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', | |
axis=1 | |
) | |
working_df['stack_size'] = working_df.apply( | |
lambda row: Counter( | |
map_dict['team_map'].get(player, '') for player in row[4:] | |
if map_dict['team_map'].get(player, '') != '' | |
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '', | |
axis=1 | |
) | |
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1) | |
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1) | |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) | |
working_df['sorted'] = working_df[player_columns].apply( | |
lambda row: ','.join(sorted(row.values)), | |
axis=1 | |
) | |
working_df['dupes'] = working_df.groupby('sorted').transform('size') | |
working_df = working_df.reset_index() | |
working_df['percentile_finish'] = working_df['index'].rank(pct=True) | |
working_df['finish'] = working_df['index'] | |
working_df = working_df.drop(['sorted', 'index'], axis=1) | |
elif type_var == 'Showdown': | |
working_df['stack'] = working_df.apply( | |
lambda row: Counter( | |
map_dict['team_map'].get(player, '') for player in row[2:] | |
if map_dict['team_map'].get(player, '') != '' | |
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '', | |
axis=1 | |
) | |
working_df['stack_size'] = working_df.apply( | |
lambda row: Counter( | |
map_dict['team_map'].get(player, '') for player in row[2:] | |
if map_dict['team_map'].get(player, '') != '' | |
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[2:]) else '', | |
axis=1 | |
) | |
# Modified salary calculation with 1.5x multiplier for first player | |
working_df['salary'] = working_df.apply( | |
lambda row: (map_dict['salary_map'].get(row[2], 0) * 1.5) + | |
sum(map_dict['salary_map'].get(player, 0) for player in row[3:]), | |
axis=1 | |
) | |
# Modified actual_fpts calculation with 1.5x multiplier for first player | |
working_df['actual_fpts'] = working_df.apply( | |
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) + | |
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]), | |
axis=1 | |
) | |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1) | |
working_df['sorted'] = working_df[player_columns].apply( | |
lambda row: ','.join(sorted(row.values)), | |
axis=1 | |
) | |
working_df['dupes'] = working_df.groupby('sorted').transform('size') | |
working_df = working_df.reset_index() | |
working_df['percentile_finish'] = working_df['index'].rank(pct=True) | |
working_df['finish'] = working_df['index'] | |
working_df = working_df.drop(['sorted', 'index'], axis=1) | |
st.session_state['field_player_frame'] = create_player_exposures(working_df, player_columns) | |
st.session_state['field_stack_frame'] = create_stack_exposures(working_df) | |
with st.expander("Info and filters"): | |
if st.button('Clear data', key='reset3'): | |
st.session_state.clear() | |
with st.form(key='filter_form'): | |
entry_parse_var = st.selectbox("Do you want to view a specific player(s) or a group of players?", ['All', 'Specific']) | |
entry_names = st.multiselect("Select players", options=st.session_state['entry_list'], default=[]) | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
# Apply entry name filter if specific entries are selected | |
if entry_parse_var == 'Specific' and entry_names: | |
working_df = working_df[working_df['BaseName'].isin(entry_names)] | |
# Initialize pagination in session state if not exists | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 1 | |
# Calculate total pages | |
rows_per_page = 500 | |
total_rows = len(working_df) | |
total_pages = (total_rows + rows_per_page - 1) // rows_per_page | |
# Create pagination controls in a single row | |
pagination_cols = st.columns([4, 1, 1, 1, 4]) | |
with pagination_cols[1]: | |
if st.button(f"Previous Page"): | |
if st.session_state['current_page'] > 1: | |
st.session_state.current_page -= 1 | |
else: | |
st.session_state.current_page = 1 | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
with pagination_cols[3]: | |
if st.button(f"Next Page"): | |
st.session_state.current_page += 1 | |
if 'player_frame' in st.session_state: | |
del st.session_state['player_frame'] | |
if 'stack_frame' in st.session_state: | |
del st.session_state['stack_frame'] | |
# Calculate start and end indices for current page | |
start_idx = (st.session_state.current_page - 1) * rows_per_page | |
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows) | |
st.dataframe( | |
working_df.iloc[start_idx:end_idx].style | |
.background_gradient(axis=0) | |
.background_gradient(cmap='RdYlGn') | |
.format(precision=2), | |
height=500, | |
use_container_width=True, | |
hide_index=True | |
) | |
with st.container(): | |
tab1, tab2, tab3, tab4 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info']) | |
with tab1: | |
col1, col2 = st.columns(2) | |
with col1: | |
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var') | |
with col2: | |
if pos_var == 'Specific': | |
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select') | |
else: | |
pos_select = None | |
if entry_parse_var == 'All': | |
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns) | |
hold_frame = st.session_state['player_frame'].copy() | |
if sport_select == 'GOLF': | |
hold_frame['Pos'] = 'G' | |
else: | |
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map']) | |
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) | |
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) | |
if pos_select: | |
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) | |
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] | |
st.dataframe(st.session_state['player_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names) | |
hold_frame = st.session_state['player_frame'].copy() | |
if sport_select == 'GOLF': | |
hold_frame['Pos'] = 'G' | |
else: | |
hold_frame['Pos'] = hold_frame['Player'].map(map_dict['pos_map']) | |
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) | |
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) | |
if pos_select: | |
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) | |
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] | |
st.dataframe(st.session_state['player_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab2: | |
if entry_parse_var == 'All': | |
st.session_state['stack_frame'] = create_stack_exposures(working_df) | |
st.dataframe(st.session_state['stack_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['stack_frame'] = create_stack_exposures(working_df, entry_names) | |
st.dataframe(st.session_state['stack_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab3: | |
if entry_parse_var == 'All': | |
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df) | |
st.dataframe(st.session_state['stack_size_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
else: | |
st.session_state['stack_size_frame'] = create_stack_size_exposures(working_df, entry_names) | |
st.dataframe(st.session_state['stack_size_frame']. | |
sort_values(by='Exposure Overall', ascending=False). | |
style.background_gradient(cmap='RdYlGn'). | |
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), | |
hide_index=True) | |
with tab4: | |
if entry_parse_var == 'All': | |
st.session_state['general_frame'] = create_general_exposures(working_df) | |
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) | |
else: | |
st.session_state['general_frame'] = create_general_exposures(working_df, entry_names) | |
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) | |