James McCool
Add TENNIS option to sport selection and position filtering in app.py
dc0d88b
raw
history blame
45 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime
def init_conn():
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client['Contest_Information']
return db
def grab_contest_names(db, sport, type):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'sd'
collection = db[f'{sport}_{db_type}_contest_info']
cursor = collection.find()
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date']
return contest_names, curr_info
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_player_info']
cursor = collection.find()
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
player_info = player_info[player_info['Contest Date'] == contest_date]
player_info = player_info.rename(columns={'Display Name': 'Player'})
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')
info_maps = {
'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
}
return player_info, info_maps
def export_contest_file(db, sport, type, contest_date, contest_id, contest_data):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_contest_data']
try:
cursor = collection.find()
contest_import = pd.DataFrame(list(cursor)).drop('_id', axis=1)
if contest_id in contest_import['Contest ID'].values:
return_message = "Data for this contest already exists, no need to upload, but we appreciate the effort!"
return return_message
except:
contest_import = pd.DataFrame(columns = ['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Contest Date', 'Contest ID'])
contest_data['Contest Date'] = contest_date
contest_data['Contest ID'] = contest_id
contest_import = pd.concat([contest_import, contest_data], ignore_index=True)
chunk_size = 10000
collection.drop()
for i in range(0, len(contest_import), chunk_size):
for _ in range(5):
try:
df_chunk = contest_import.iloc[i:i + chunk_size]
collection.insert_many(df_chunk.to_dict('records'), ordered=False)
break
except Exception as e:
print(f"Retry due to error: {e}")
return_message = "Contest data uploaded successfully! We appreciate the data!"
return return_message
db = init_conn()
## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data
from global_func.create_player_comparison import create_player_comparison
from global_func.create_stack_comparison import create_stack_comparison
from global_func.create_size_comparison import create_size_comparison
from global_func.create_general_comparison import create_general_comparison
def is_valid_input(file):
if isinstance(file, pd.DataFrame):
return not file.empty
else:
return file is not None # For Streamlit uploader objects
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'}
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
col1, col2 = st.columns(2)
with col1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
sport_options, date_options = st.columns(2)
parse_type = 'Manual'
with sport_options:
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF', 'NBA', 'NHL', 'WNBA', 'TENNIS'], key='sport_select')
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')
try:
contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
except:
st.error("No contests found for this sport and/or game type")
st.stop()
with date_options:
date_list = curr_info['Date'].sort_values(ascending=False).unique()
# date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
date_select = st.selectbox("Select Date", date_list, key='date_select')
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID']))
date_select = date_select.replace('-', '')
date_select2 = date_select2.replace('-', '')
contest_name_var = st.selectbox("Select Contest to load", name_parse)
if parse_type == 'DB Search':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
if st.button('Load Contest Data', key='load_contest_data'):
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2)
else:
pass
with col2:
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/, or you can initiate a download with this link: https://www.draftkings.com/contest/exportfullstandingscsv/{contest_id_map[contest_name_var]}")
if parse_type == 'Manual':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
try:
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
except:
st.warning('Please upload a Contest CSV')
else:
pass
if 'Contest_file' in st.session_state:
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select)
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
if st.session_state['Contest'] is not None:
success_col, info_col, upload_col, message_col = st.columns([1, 3, 1, 2])
with success_col:
st.success('Contest file loaded successfully!')
with info_col:
st.warning("If you have confirmed that the data is correct, you can send the CSV to the database to enrich Paydirt's sources and help us create actionable tools and algorithms >>")
with upload_col:
if st.button('Send file to Database?', key='export_contest_file'):
return_message = export_contest_file(db, sport_select, type_var, date_select, contest_id_map[contest_name_var], st.session_state['Contest_file'])
with message_col:
try:
st.info(return_message)
except:
pass
st.dataframe(st.session_state['Contest'].head(100))
if 'Contest_file' in st.session_state:
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
with tab2:
excluded_cols = ['BaseName', 'EntryCount']
exclude_stacks = ['BaseName', 'EntryCount', 'SP', 'SP1', 'SP2']
if 'Contest' in st.session_state and 'display_contest_info' not in st.session_state:
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
st.session_state['stack_columns'] = [col for col in st.session_state['Contest'].columns if col not in exclude_stacks]
print(st.session_state['player_columns'])
for col in st.session_state['player_columns']:
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip()
# Create mapping dictionaries
st.session_state['map_dict'] = {
'pos_map': st.session_state['pos_dict'],
'team_map': st.session_state['team_dict'],
'salary_map': st.session_state['salary_dict'],
'own_map': st.session_state['ownership_dict'],
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
}
# Create a copy of the dataframe for calculations
working_df = st.session_state['Contest'].copy()
if type_var == 'Classic':
working_df['stack'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['stack_columns']]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['stack_columns']]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['stack_columns']]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['stack_columns']]) else '',
axis=1
)
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
print("Sample row values:")
print(working_df.iloc[0][st.session_state['player_columns']])
print("Sample salary calculation:")
sample_row = working_df.iloc[0]
sample_salary = sum(st.session_state['salary_dict'].get(player, 0) for player in sample_row[st.session_state['player_columns']])
print(f"Sample salary: {sample_salary}")
print("Individual player salaries:")
for player in sample_row[st.session_state['player_columns']]:
salary = st.session_state['salary_dict'].get(player, 0)
print(f" {player}: {salary}")
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df['uniques'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] == 1).sum()
).reindex(working_df['BaseName']).values
working_df['under_5'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 5).sum()
).reindex(working_df['BaseName']).values
working_df['under_10'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 10).sum()
).reindex(working_df['BaseName']).values
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
elif type_var == 'Showdown':
working_df['stack'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
if sport_select == 'GOLF':
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
else:
# Modified salary calculation with 1.5x multiplier for first player
working_df['salary'] = working_df.apply(
lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
axis=1
)
# Modified actual_fpts calculation with 1.5x multiplier for first player
working_df['actual_fpts'] = working_df.apply(
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
axis=1
)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df['uniques'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] == 1).sum()
).reindex(working_df['BaseName']).values
working_df['under_5'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 5).sum()
).reindex(working_df['BaseName']).values
working_df['under_10'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 10).sum()
).reindex(working_df['BaseName']).values
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
# working_df['stack_size'] = working_df['stack_size'].fillna(1).astype(int)
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns'])
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
st.session_state['display_contest_info'] = working_df.copy()
st.session_state['contest_info_reset'] = working_df.copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values
if 'display_contest_info' in st.session_state:
with st.expander("Info and filters"):
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'")
clear_col, reset_col, blank_col = st.columns([1, 1, 7])
with clear_col:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with reset_col:
if st.button('Reset filters', key='reset4'):
st.session_state['entry_parse_var'] = 'All'
st.session_state['entry_names'] = []
st.session_state['low_entries_var'] = 1
st.session_state['high_entries_var'] = 150
st.session_state['stack_parse_var'] = 'All'
st.session_state['stack_names'] = []
st.session_state['stack_size_parse_var'] = 'All'
st.session_state['stack_size_names'] = []
st.session_state['player_parse_var'] = 'All'
st.session_state['player_names'] = []
st.session_state['remove_var'] = 'No'
st.session_state['remove_names'] = []
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values
with st.form(key='filter_form'):
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6)
with users_var:
st.session_state['entry_parse_var'] = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific'])
st.session_state['entry_names'] = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
with entries_var:
st.session_state['low_entries_var'] = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1)
st.session_state['high_entries_var'] = st.number_input("High end of entries range", min_value=0, max_value=150, value=150)
with stack_var:
st.session_state['stack_parse_var'] = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific'])
st.session_state['stack_names'] = st.multiselect("Select teams", options=st.session_state['display_contest_info']['stack'].unique(), default=[])
with stack_size_var:
st.session_state['stack_size_parse_var'] = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific'])
st.session_state['stack_size_names'] = st.multiselect("Select stack sizes", options=st.session_state['display_contest_info']['stack_size'].unique(), default=[])
with player_var:
st.session_state['player_parse_var'] = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific'])
st.session_state['player_names'] = st.multiselect("Select players to lock", options=st.session_state['unique_players'], default=[])
with remove_var:
st.session_state['remove_var'] = st.selectbox("Do you want to remove a specific player(s)?", ['No', 'Yes'])
st.session_state['remove_names'] = st.multiselect("Select players to remove", options=st.session_state['unique_players'], default=[])
submitted = st.form_submit_button("Submit")
if submitted:
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
if st.session_state['entry_parse_var'] == 'Specific' and st.session_state['entry_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'].isin(st.session_state['entry_names'])]
if st.session_state['stack_parse_var'] == 'Specific' and st.session_state['stack_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack'].isin(st.session_state['stack_names'])]
if st.session_state['stack_size_parse_var'] == 'Specific' and st.session_state['stack_size_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack_size'].isin(st.session_state['stack_size_names'])]
if st.session_state['player_parse_var'] == 'Specific' and st.session_state['player_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: all(player in row.values for player in st.session_state['player_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][mask]
if st.session_state['remove_var'] == 'Yes' and st.session_state['remove_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: any(player in row.values for player in st.session_state['remove_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][~mask]
if st.session_state['low_entries_var'] and st.session_state['high_entries_var']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['EntryCount'].between(st.session_state['low_entries_var'], st.session_state['high_entries_var'])]
if 'display_contest_info' in st.session_state:
# Initialize pagination in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Calculate total pages
rows_per_page = 500
total_rows = len(st.session_state['display_contest_info'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Page"):
if st.session_state['current_page'] > 1:
st.session_state.current_page -= 1
else:
st.session_state.current_page = 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
with pagination_cols[3]:
if st.button(f"Next Page"):
st.session_state.current_page += 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
st.dataframe(
st.session_state['display_contest_info'].iloc[start_idx:end_idx].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=500,
use_container_width=True,
hide_index=True
)
else:
st.stop()
if 'Contest' in st.session_state:
with st.container():
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info'])
with tab1:
player_pos_form_col, player_comp_form_col = st.columns(2)
with player_pos_form_col:
with st.form(key='player_info_pos_form'):
col1, col2 = st.columns(2)
with col1:
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var')
with col2:
if sport_select == 'MLB':
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
elif sport_select == 'NBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_select')
elif sport_select == 'WNBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF'], key='pos_select')
elif sport_select == 'NFL':
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_select')
elif sport_select == 'NHL':
pos_select = st.multiselect("Select your position(s)", ['W', 'C', 'D', 'G'], key='pos_select')
elif sport_select == 'MMA':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif sport_select == 'GOLF':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif sport_select == 'TENNIS':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
submitted = st.form_submit_button("Submit")
if submitted:
if pos_var == 'Specific':
pos_select = pos_select
else:
pos_select = None
with player_comp_form_col:
with st.form(key='player_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_player_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_player_var')
with col2:
comp_player_select = st.multiselect("Select players to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_player_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_player_var == 'No':
comp_player_select = None
else:
comp_player_select = comp_player_select
if comp_player_var == 'Yes':
player_exp_comp = create_player_comparison(st.session_state['display_contest_info'], st.session_state['player_columns'], comp_player_select)
hold_frame = player_exp_comp.copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
player_exp_comp.insert(1, 'Pos', hold_frame['Pos'])
player_exp_comp = player_exp_comp.dropna(subset=['Pos'])
if pos_select:
position_mask = player_exp_comp['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
player_exp_comp = player_exp_comp[position_mask]
st.dataframe(player_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=player_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'])
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'], st.session_state['entry_names'])
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab2:
with st.form(key='stack_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_stack_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_stack_var')
with col2:
comp_stack_select = st.multiselect("Select stacks to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_stack_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_stack_var == 'No':
comp_stack_select = None
else:
comp_stack_select = comp_stack_select
if comp_stack_var == 'Yes':
stack_exp_comp = create_stack_comparison(st.session_state['display_contest_info'], comp_stack_select)
st.dataframe(stack_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=stack_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab3:
with st.form(key='size_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_size_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_size_var')
with col2:
comp_size_select = st.multiselect("Select sizes to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_size_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_size_var == 'No':
comp_size_select = None
else:
comp_size_select = comp_size_select
if comp_size_var == 'Yes':
size_exp_comp = create_size_comparison(st.session_state['display_contest_info'], comp_size_select)
st.dataframe(size_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=size_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab4:
with st.form(key='general_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_general_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_general_var')
with col2:
comp_general_select = st.multiselect("Select generals to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_general_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_general_var == 'No':
comp_general_select = None
else:
comp_general_select = comp_general_select
if comp_general_var == 'Yes':
general_comp = create_general_comparison(st.session_state['display_contest_info'], comp_general_select)
st.dataframe(general_comp.style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2))
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
else:
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
with tab5:
with st.form(key='dupe_form'):
col1, col2 = st.columns(2)
with col1:
user_dupe_var = st.selectbox("Which usage(s) would you like to view?", ['All', 'Specific'], key='user_dupe_var')
with col2:
user_dupe_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_dupe_select')
submitted = st.form_submit_button("Submit")
if submitted:
if user_dupe_var == 'Specific':
user_dupe_select = user_dupe_select
else:
user_dupe_select = None
if 'duplication_frame' not in st.session_state:
dupe_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
dupe_frame['average_dupes'] = dupe_frame['dupes'].mean()
dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount']
dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount']
dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount']
dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first')
st.session_state['duplication_frame'] = dupe_frame.sort_values(by='uniques%', ascending=False)
if user_dupe_var == 'Specific':
st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)]
# Initialize pagination in session state if not exists
if 'dupe_page' not in st.session_state:
st.session_state.dupe_page = 1
# Calculate total pages
rows_per_page = 50
total_rows = len(st.session_state['duplication_frame'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Dupes Page"):
if st.session_state['dupe_page'] > 1:
st.session_state.dupe_page -= 1
with pagination_cols[3]:
if st.button(f"Next Dupes Page"):
st.session_state.dupe_page += 1
# Calculate start and end indices for current page
start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page
end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows)
st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style.
background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0).
background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0).
format(dupe_format, precision=2), hide_index=True)