|
import streamlit as st |
|
import pandas as pd |
|
from rapidfuzz import process, fuzz |
|
from numpy import where as np_where |
|
|
|
def load_contest_file(upload, type, helper = None, sport = None): |
|
if upload is not None: |
|
try: |
|
try: |
|
if upload.name.endswith('.csv'): |
|
raw_df = pd.read_csv(upload) |
|
elif upload.name.endswith(('.xls', '.xlsx')): |
|
raw_df = pd.read_excel(upload) |
|
else: |
|
st.error('Please upload either a CSV or Excel file') |
|
return None |
|
except: |
|
raw_df = upload |
|
if helper is not None: |
|
helper_df = helper |
|
|
|
print('Made it through initial upload') |
|
|
|
|
|
if helper is None: |
|
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Salary', 'Team']] |
|
else: |
|
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']] |
|
df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'}) |
|
|
|
print('Made it through rename') |
|
|
|
|
|
df['BaseName'] = df['EntryName'].str.replace(r'\s*\(\d+/\d+\)$', '', regex=True) |
|
df['EntryCount'] = df['EntryName'].str.extract(r'\((\d+/\d+)\)') |
|
df['EntryCount'] = df['EntryCount'].fillna('1/1') |
|
if type == 'Showdown': |
|
df['FPTS'] = np_where(df['Pos'] == 'CPT', df['FPTS'] / 1.5, df['FPTS']) |
|
|
|
|
|
try: |
|
df['Own'] = df['Own'].str.replace('%', '').astype(float) |
|
except: |
|
df['Own'] = df['Own'].astype(float) |
|
|
|
print('Made it through ownership conversion') |
|
|
|
|
|
if helper is not None: |
|
df_helper = helper_df[['Player', 'Salary', 'Team']] |
|
|
|
print('Made it through helper') |
|
|
|
contest_names = df.Player.unique() |
|
if helper is not None: |
|
helper_names = helper_df.Player.unique() |
|
|
|
contest_match_dict = {} |
|
helper_match_dict = {} |
|
for names in contest_names: |
|
match = process.extractOne( |
|
names, |
|
helper_names, |
|
score_cutoff = 85 |
|
) |
|
if match: |
|
contest_match_dict[names] = match[0] |
|
else: |
|
contest_match_dict[names] = names |
|
|
|
for names in helper_names: |
|
match = process.extractOne( |
|
names, |
|
contest_names, |
|
score_cutoff = 85 |
|
) |
|
if match: |
|
helper_match_dict[names] = match[0] |
|
else: |
|
helper_match_dict[names] = names |
|
|
|
for key, value in helper_match_dict.items(): |
|
if key not in contest_match_dict: |
|
contest_match_dict[key] = value |
|
|
|
df_helper['Player'] = df_helper['Player'].map(contest_match_dict) |
|
|
|
df_helper = df_helper.drop_duplicates(subset='Player', keep='first') |
|
|
|
|
|
|
|
if helper is not None: |
|
ownership_df = df[['Player', 'Own']] |
|
fpts_df = df[['Player', 'FPTS']] |
|
salary_df = df_helper[['Player', 'Salary']] |
|
team_df = df_helper[['Player', 'Team']] |
|
pos_df = df[['Player', 'Pos']] |
|
else: |
|
ownership_df = df[['Player', 'Own']] |
|
fpts_df = df[['Player', 'FPTS']] |
|
salary_df = df[['Player', 'Salary']] |
|
team_df = df[['Player', 'Team']] |
|
pos_df = df[['Player', 'Pos']] |
|
|
|
print('Made it through dictionaries') |
|
|
|
|
|
cleaned_df = df[['BaseName', 'Lineup']] |
|
if type == 'Classic': |
|
if sport == 'MLB': |
|
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF '], value=',', regex=True) |
|
elif sport == 'MMA': |
|
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True) |
|
elif sport == 'GOLF': |
|
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True) |
|
print(sport) |
|
check_lineups = cleaned_df.copy() |
|
if sport == 'MLB': |
|
cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True) |
|
elif sport == 'MMA': |
|
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True) |
|
elif sport == 'GOLF': |
|
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True) |
|
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove']) |
|
entry_counts = cleaned_df['BaseName'].value_counts() |
|
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts) |
|
if sport == 'MLB': |
|
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']] |
|
elif sport == 'MMA': |
|
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] |
|
elif sport == 'GOLF': |
|
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] |
|
elif type == 'Showdown': |
|
if sport == 'NHL': |
|
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True) |
|
else: |
|
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' UTIL ', 'CPT '], value=',', regex=True) |
|
print(type) |
|
check_lineups = cleaned_df.copy() |
|
cleaned_df[['Remove', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']] = cleaned_df['Lineup'].str.split(',', expand=True) |
|
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove']) |
|
entry_counts = cleaned_df['BaseName'].value_counts() |
|
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts) |
|
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']] |
|
|
|
print('Made it through check_lineups') |
|
|
|
|
|
entry_list = list(set(df['BaseName'].dropna())) |
|
entry_list.sort() |
|
|
|
return cleaned_df, ownership_df, fpts_df, entry_list, check_lineups |
|
|
|
except Exception as e: |
|
st.error(f'Error loading file: {str(e)}') |
|
return None |
|
return None |