James McCool
commited on
Commit
·
0bb17b9
1
Parent(s):
401a7dd
Refactor WNBA lineup column order in load_contest_file.py
Browse files- Adjusted the order of columns in the DataFrame for WNBA lineups to improve consistency and readability after parsing.
- Ensured that the 'Remove' column is still included while maintaining the integrity of player position assignments.
global_func/load_contest_file.py
CHANGED
@@ -124,7 +124,7 @@ def load_contest_file(upload, type, helper = None, sport = None):
|
|
124 |
elif sport == 'GOLF':
|
125 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
126 |
elif sport == 'WNBA':
|
127 |
-
cleaned_df[['Remove', '
|
128 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
129 |
entry_counts = cleaned_df['BaseName'].value_counts()
|
130 |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
|
@@ -135,7 +135,7 @@ def load_contest_file(upload, type, helper = None, sport = None):
|
|
135 |
elif sport == 'GOLF':
|
136 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
137 |
elif sport == 'WNBA':
|
138 |
-
cleaned_df = cleaned_df[['BaseName', 'EntryCount', '
|
139 |
elif type == 'Showdown':
|
140 |
if sport == 'NHL':
|
141 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
|
|
|
124 |
elif sport == 'GOLF':
|
125 |
cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
126 |
elif sport == 'WNBA':
|
127 |
+
cleaned_df[['Remove', 'Forward1', 'Forward2', 'Forward3', 'Guard1', 'Guard2', 'UTIL']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
128 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
129 |
entry_counts = cleaned_df['BaseName'].value_counts()
|
130 |
cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
|
|
|
135 |
elif sport == 'GOLF':
|
136 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
|
137 |
elif sport == 'WNBA':
|
138 |
+
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Forward1', 'Forward2', 'Forward3', 'Guard1', 'Guard2', 'UTIL']]
|
139 |
elif type == 'Showdown':
|
140 |
if sport == 'NHL':
|
141 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
|