James McCool commited on
Commit
18b59a2
·
1 Parent(s): 082eda6

Refactor player data processing in app.py for improved accuracy

Browse files

- Updated logic to correctly reference player data starting from the fifth column, ensuring accurate calculations for stack and stack size.
- Renamed the 'actual' column to 'actual_fpts' for clarity, and added a new 'actual_own' column to track ownership data more effectively.
- Enhanced data integrity by ensuring all calculations are based on the correct player data, improving overall functionality.

Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -120,22 +120,23 @@ with tab2:
120
  if type_var == 'Classic':
121
  working_df['stack'] = working_df.apply(
122
  lambda row: Counter(
123
- map_dict['team_map'].get(player, '') for player in row
124
  if map_dict['team_map'].get(player, '') != ''
125
- ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
126
  axis=1
127
  )
128
  working_df['stack_size'] = working_df.apply(
129
  lambda row: Counter(
130
- map_dict['team_map'].get(player, '') for player in row
131
  if map_dict['team_map'].get(player, '') != ''
132
- ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
133
  axis=1
134
  )
135
  working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
136
  working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
137
- working_df['actual'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
138
  working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
 
139
  working_df['sorted'] = working_df[player_columns].apply(
140
  lambda row: ','.join(sorted(row.values)),
141
  axis=1
 
120
  if type_var == 'Classic':
121
  working_df['stack'] = working_df.apply(
122
  lambda row: Counter(
123
+ map_dict['team_map'].get(player, '') for player in row[4:]
124
  if map_dict['team_map'].get(player, '') != ''
125
+ ).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
126
  axis=1
127
  )
128
  working_df['stack_size'] = working_df.apply(
129
  lambda row: Counter(
130
+ map_dict['team_map'].get(player, '') for player in row[4:]
131
  if map_dict['team_map'].get(player, '') != ''
132
+ ).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
133
  axis=1
134
  )
135
  working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
136
  working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
137
+ working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
138
  working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
139
+ working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
140
  working_df['sorted'] = working_df[player_columns].apply(
141
  lambda row: ','.join(sorted(row.values)),
142
  axis=1