James McCool
commited on
Commit
·
18b59a2
1
Parent(s):
082eda6
Refactor player data processing in app.py for improved accuracy
Browse files- Updated logic to correctly reference player data starting from the fifth column, ensuring accurate calculations for stack and stack size.
- Renamed the 'actual' column to 'actual_fpts' for clarity, and added a new 'actual_own' column to track ownership data more effectively.
- Enhanced data integrity by ensuring all calculations are based on the correct player data, improving overall functionality.
app.py
CHANGED
@@ -120,22 +120,23 @@ with tab2:
|
|
120 |
if type_var == 'Classic':
|
121 |
working_df['stack'] = working_df.apply(
|
122 |
lambda row: Counter(
|
123 |
-
map_dict['team_map'].get(player, '') for player in row
|
124 |
if map_dict['team_map'].get(player, '') != ''
|
125 |
-
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row) else '',
|
126 |
axis=1
|
127 |
)
|
128 |
working_df['stack_size'] = working_df.apply(
|
129 |
lambda row: Counter(
|
130 |
-
map_dict['team_map'].get(player, '') for player in row
|
131 |
if map_dict['team_map'].get(player, '') != ''
|
132 |
-
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row) else '',
|
133 |
axis=1
|
134 |
)
|
135 |
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
136 |
working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
137 |
-
working_df['
|
138 |
working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
|
|
139 |
working_df['sorted'] = working_df[player_columns].apply(
|
140 |
lambda row: ','.join(sorted(row.values)),
|
141 |
axis=1
|
|
|
120 |
if type_var == 'Classic':
|
121 |
working_df['stack'] = working_df.apply(
|
122 |
lambda row: Counter(
|
123 |
+
map_dict['team_map'].get(player, '') for player in row[4:]
|
124 |
if map_dict['team_map'].get(player, '') != ''
|
125 |
+
).most_common(1)[0][0] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
|
126 |
axis=1
|
127 |
)
|
128 |
working_df['stack_size'] = working_df.apply(
|
129 |
lambda row: Counter(
|
130 |
+
map_dict['team_map'].get(player, '') for player in row[4:]
|
131 |
if map_dict['team_map'].get(player, '') != ''
|
132 |
+
).most_common(1)[0][1] if any(map_dict['team_map'].get(player, '') for player in row[4:]) else '',
|
133 |
axis=1
|
134 |
)
|
135 |
working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
136 |
working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
137 |
+
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
|
138 |
working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
139 |
+
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
|
140 |
working_df['sorted'] = working_df[player_columns].apply(
|
141 |
lambda row: ','.join(sorted(row.values)),
|
142 |
axis=1
|