James McCool commited on
Commit
265f036
·
1 Parent(s): 58cb12e

Refactor column layout and update player data processing in app.py

Browse files

- Adjusted the layout by reducing the number of columns from three to two for improved UI organization.
- Updated player data processing logic to reference 'actual_fpts' instead of 'actual', ensuring accurate calculations for player performance metrics.
- Enhanced overall data integrity by maintaining consistent column references across the application.

Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -25,7 +25,7 @@ with tab1:
25
  st.session_state.clear()
26
  sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
27
  # Add file uploaders to your app
28
- col1, col2, col3 = st.columns(3)
29
 
30
  with col1:
31
  st.subheader("Contest File")
@@ -188,10 +188,10 @@ with tab2:
188
  players_20per = set()
189
  for col in player_columns:
190
  contest_players = working_df.copy()
191
- players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual')
192
- players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual')
193
- players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual')
194
- players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual')
195
  player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
196
  player_1per_counts = pd.Series(list(players_1per[player_columns].values.flatten())).value_counts()
197
  player_5per_counts = pd.Series(list(players_5per[player_columns].values.flatten())).value_counts()
 
25
  st.session_state.clear()
26
  sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
27
  # Add file uploaders to your app
28
+ col1, col2 = st.columns(2)
29
 
30
  with col1:
31
  st.subheader("Contest File")
 
188
  players_20per = set()
189
  for col in player_columns:
190
  contest_players = working_df.copy()
191
+ players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual_fpts')
192
+ players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual_fpts')
193
+ players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual_fpts')
194
+ players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual_fpts')
195
  player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
196
  player_1per_counts = pd.Series(list(players_1per[player_columns].values.flatten())).value_counts()
197
  player_5per_counts = pd.Series(list(players_5per[player_columns].values.flatten())).value_counts()