James McCool
commited on
Commit
·
265f036
1
Parent(s):
58cb12e
Refactor column layout and update player data processing in app.py
Browse files- Adjusted the layout by reducing the number of columns from three to two for improved UI organization.
- Updated player data processing logic to reference 'actual_fpts' instead of 'actual', ensuring accurate calculations for player performance metrics.
- Enhanced overall data integrity by maintaining consistent column references across the application.
app.py
CHANGED
@@ -25,7 +25,7 @@ with tab1:
|
|
25 |
st.session_state.clear()
|
26 |
sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
|
27 |
# Add file uploaders to your app
|
28 |
-
col1, col2
|
29 |
|
30 |
with col1:
|
31 |
st.subheader("Contest File")
|
@@ -188,10 +188,10 @@ with tab2:
|
|
188 |
players_20per = set()
|
189 |
for col in player_columns:
|
190 |
contest_players = working_df.copy()
|
191 |
-
players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='
|
192 |
-
players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='
|
193 |
-
players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='
|
194 |
-
players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='
|
195 |
player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
|
196 |
player_1per_counts = pd.Series(list(players_1per[player_columns].values.flatten())).value_counts()
|
197 |
player_5per_counts = pd.Series(list(players_5per[player_columns].values.flatten())).value_counts()
|
|
|
25 |
st.session_state.clear()
|
26 |
sport_select = st.selectbox("Select Sport", ['MLB', 'NBA', 'NFL'])
|
27 |
# Add file uploaders to your app
|
28 |
+
col1, col2 = st.columns(2)
|
29 |
|
30 |
with col1:
|
31 |
st.subheader("Contest File")
|
|
|
188 |
players_20per = set()
|
189 |
for col in player_columns:
|
190 |
contest_players = working_df.copy()
|
191 |
+
players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual_fpts')
|
192 |
+
players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual_fpts')
|
193 |
+
players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual_fpts')
|
194 |
+
players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual_fpts')
|
195 |
player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
|
196 |
player_1per_counts = pd.Series(list(players_1per[player_columns].values.flatten())).value_counts()
|
197 |
player_5per_counts = pd.Series(list(players_5per[player_columns].values.flatten())).value_counts()
|