James McCool commited on
Commit
2ac8839
·
1 Parent(s): 4727314

Remove unnecessary print statements from app.py and load_contest_file.py for cleaner code

Browse files

- Eliminated print statements related to salary_dict and player information in both app.py and load_contest_file.py, enhancing code readability and reducing clutter in the output.
- Maintained existing functionality while streamlining the data handling process during contest file loading and player information retrieval.

Files changed (2) hide show
  1. app.py +0 -2
  2. global_func/load_contest_file.py +0 -16
app.py CHANGED
@@ -146,8 +146,6 @@ with tab1:
146
  st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
147
  st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
148
 
149
- st.write(st.session_state['salary_dict'])
150
-
151
  with tab2:
152
  excluded_cols = ['BaseName', 'EntryCount']
153
  if 'Contest' in st.session_state:
 
146
  st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
147
  st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
148
 
 
 
149
  with tab2:
150
  excluded_cols = ['BaseName', 'EntryCount']
151
  if 'Contest' in st.session_state:
global_func/load_contest_file.py CHANGED
@@ -48,8 +48,6 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
48
 
49
  print('Made it through helper')
50
 
51
- print(df_helper[df_helper['Player'] == 'Luis Torrens'])
52
-
53
  contest_names = df.Player.unique()
54
  if helper is not None:
55
  helper_names = helper_df.Player.unique()
@@ -84,8 +82,6 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
84
 
85
  df_helper['Player'] = df_helper['Player'].map(contest_match_dict)
86
  df_helper = df_helper.drop_duplicates(subset='Player', keep='first')
87
-
88
- print(df_helper[df_helper['Player'] == 'Luis Torrens'])
89
 
90
  # Create separate dataframes for different player attributes
91
  if helper is not None:
@@ -112,8 +108,6 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
112
  elif sport == 'GOLF':
113
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
114
  print(sport)
115
- print(cleaned_df.head(10))
116
- st.table(cleaned_df.head(10))
117
  check_lineups = cleaned_df.copy()
118
  if sport == 'MLB':
119
  cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
@@ -121,7 +115,6 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
121
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
122
  elif sport == 'GOLF':
123
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
124
- st.table(cleaned_df.head(10))
125
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
126
  entry_counts = cleaned_df['BaseName'].value_counts()
127
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
@@ -134,15 +127,6 @@ def load_contest_file(upload, helper_var, helper = None, sport = None):
134
  st.table(cleaned_df.head(10))
135
 
136
  print('Made it through check_lineups')
137
-
138
- st.table(df['BaseName'].dropna())
139
- st.table(cleaned_df)
140
- st.table(ownership_df)
141
- st.table(fpts_df)
142
- st.table(salary_df)
143
- st.table(team_df)
144
- st.table(pos_df)
145
- st.table(check_lineups)
146
 
147
  # Get unique entry names
148
  entry_list = list(set(df['BaseName'].dropna()))
 
48
 
49
  print('Made it through helper')
50
 
 
 
51
  contest_names = df.Player.unique()
52
  if helper is not None:
53
  helper_names = helper_df.Player.unique()
 
82
 
83
  df_helper['Player'] = df_helper['Player'].map(contest_match_dict)
84
  df_helper = df_helper.drop_duplicates(subset='Player', keep='first')
 
 
85
 
86
  # Create separate dataframes for different player attributes
87
  if helper is not None:
 
108
  elif sport == 'GOLF':
109
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
110
  print(sport)
 
 
111
  check_lineups = cleaned_df.copy()
112
  if sport == 'MLB':
113
  cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
 
115
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
116
  elif sport == 'GOLF':
117
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
 
118
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
119
  entry_counts = cleaned_df['BaseName'].value_counts()
120
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
 
127
  st.table(cleaned_df.head(10))
128
 
129
  print('Made it through check_lineups')
 
 
 
 
 
 
 
 
 
130
 
131
  # Get unique entry names
132
  entry_list = list(set(df['BaseName'].dropna()))