James McCool commited on
Commit
3b3771c
·
1 Parent(s): 63c301f

Update app.py to utilize session state for ownership and actual metrics

Browse files

- Replaced direct references to ownership_dict and actual_dict with session state equivalents, improving consistency in data handling.
- Enhanced the calculation of actual fantasy points and ownership metrics to ensure accurate data processing based on session state values.

Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -122,7 +122,7 @@ with tab2:
122
  working_df = working_df[working_df['BaseName'].isin(entry_names)]
123
 
124
  # Calculate metrics based on game type
125
- st.write(actual_dict)
126
  if type_var == 'Classic':
127
  working_df['stack'] = working_df.apply(
128
  lambda row: Counter(
@@ -140,9 +140,9 @@ with tab2:
140
  )
141
  working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
142
  working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
143
- working_df['actual_fpts'] = working_df.apply(lambda row: sum(actual_dict.get(player, 0) for player in row), axis=1)
144
  working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
145
- working_df['actual_own'] = working_df.apply(lambda row: sum(ownership_dict.get(player, 0) for player in row), axis=1)
146
  working_df['sorted'] = working_df[player_columns].apply(
147
  lambda row: ','.join(sorted(row.values)),
148
  axis=1
 
122
  working_df = working_df[working_df['BaseName'].isin(entry_names)]
123
 
124
  # Calculate metrics based on game type
125
+ st.write(st.session_state['ownership_dict'])
126
  if type_var == 'Classic':
127
  working_df['stack'] = working_df.apply(
128
  lambda row: Counter(
 
140
  )
141
  working_df['salary'] = working_df.apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
142
  working_df['median'] = working_df.apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
143
+ working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
144
  working_df['Own'] = working_df.apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
145
+ working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
146
  working_df['sorted'] = working_df[player_columns].apply(
147
  lambda row: ','.join(sorted(row.values)),
148
  axis=1