James McCool
commited on
Commit
·
42712b2
1
Parent(s):
c375de1
Add position mapping and eligibility checks in load_contest_file function
Browse files- Implemented a position mapping dictionary to associate players with their respective positions.
- Added logic to create empty columns for MLB positions and fill them based on player eligibility.
- Enhanced lineup processing to ensure accurate assignment of players to required positions, improving data integrity and user experience.
- These changes contribute to ongoing efforts to refine player data handling within the application.
global_func/load_contest_file.py
CHANGED
@@ -57,6 +57,54 @@ def load_contest_file(upload, sport):
|
|
57 |
salary_df = df[['Player', 'Salary']]
|
58 |
team_df = df[['Player', 'Team']]
|
59 |
pos_df = df[['Player', 'Pos']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS', 'Salary', 'Team'])
|
61 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
62 |
entry_list = list(set(df['BaseName']))
|
|
|
57 |
salary_df = df[['Player', 'Salary']]
|
58 |
team_df = df[['Player', 'Team']]
|
59 |
pos_df = df[['Player', 'Pos']]
|
60 |
+
|
61 |
+
# Create position mapping dictionary
|
62 |
+
pos_dict = dict(zip(pos_df['Player'], pos_df['Pos']))
|
63 |
+
|
64 |
+
# Create empty columns for each position
|
65 |
+
if sport == 'MLB':
|
66 |
+
position_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
67 |
+
for col in position_columns:
|
68 |
+
df[col] = None
|
69 |
+
|
70 |
+
# Function to check if player is eligible for position
|
71 |
+
def is_eligible_for_position(player, target_pos):
|
72 |
+
if player not in pos_dict:
|
73 |
+
return False
|
74 |
+
player_positions = pos_dict[player].split('/')
|
75 |
+
# Handle special cases
|
76 |
+
if target_pos.startswith('SP') and 'P' in player_positions:
|
77 |
+
return True
|
78 |
+
if target_pos.startswith('OF') and 'OF' in player_positions:
|
79 |
+
return True
|
80 |
+
return target_pos in player_positions
|
81 |
+
|
82 |
+
# Process each lineup
|
83 |
+
for idx, row in df.iterrows():
|
84 |
+
# Get all players in the lineup
|
85 |
+
players = row['Lineup'].split(',')
|
86 |
+
players = [p.strip() for p in players if p.strip()]
|
87 |
+
|
88 |
+
# First pass: fill required positions (SP1, SP2, C, 1B, 2B, 3B, SS)
|
89 |
+
required_positions = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS']
|
90 |
+
for pos in required_positions:
|
91 |
+
for player in players:
|
92 |
+
if is_eligible_for_position(player, pos):
|
93 |
+
df.at[idx, pos] = player
|
94 |
+
players.remove(player)
|
95 |
+
break
|
96 |
+
|
97 |
+
# Second pass: fill OF positions with remaining players
|
98 |
+
of_positions = ['OF1', 'OF2', 'OF3']
|
99 |
+
for pos in of_positions:
|
100 |
+
for player in players:
|
101 |
+
if is_eligible_for_position(player, 'OF'):
|
102 |
+
df.at[idx, pos] = player
|
103 |
+
players.remove(player)
|
104 |
+
break
|
105 |
+
if not players: # If no more players, fill with -1
|
106 |
+
df.at[idx, pos] = '-1'
|
107 |
+
|
108 |
cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS', 'Salary', 'Team'])
|
109 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
110 |
entry_list = list(set(df['BaseName']))
|