James McCool
commited on
Commit
·
433ab29
1
Parent(s):
a8cf688
Update contest data handling in app.py and related functions to include position data
Browse files- Modified the load_contest_file function to return position data alongside existing contest data, enhancing the information available for each player.
- Updated app.py to utilize the new position data, ensuring that session state variables are populated with the latest player information.
- Adjusted the grab_contest_data function to improve the handling of lineup strings, ensuring accurate data representation.
- These changes contribute to ongoing efforts to improve data integrity and user experience within the application.
- app.py +3 -2
- global_func/grab_contest_data.py +1 -1
- global_func/load_contest_file.py +2 -1
app.py
CHANGED
@@ -86,7 +86,7 @@ with tab1:
|
|
86 |
del st.session_state['Contest']
|
87 |
|
88 |
if 'Contest_file' in st.session_state and 'Adj_Contest' not in st.session_state:
|
89 |
-
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['entry_list'] = load_contest_file(st.session_state['Contest_file'], sport_select)
|
90 |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
|
91 |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
|
92 |
if st.session_state['Contest'] is not None:
|
@@ -98,11 +98,12 @@ with tab1:
|
|
98 |
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
|
99 |
st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
|
100 |
st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
|
|
|
101 |
st.write(st.session_state['ownership_dict'])
|
102 |
st.write(st.session_state['actual_dict'])
|
103 |
st.write(st.session_state['salary_dict'])
|
104 |
st.write(st.session_state['team_dict'])
|
105 |
-
|
106 |
|
107 |
with tab2:
|
108 |
excluded_cols = ['BaseName', 'EntryCount']
|
|
|
86 |
del st.session_state['Contest']
|
87 |
|
88 |
if 'Contest_file' in st.session_state and 'Adj_Contest' not in st.session_state:
|
89 |
+
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['pos_df'], st.session_state['entry_list'] = load_contest_file(st.session_state['Contest_file'], sport_select)
|
90 |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
|
91 |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
|
92 |
if st.session_state['Contest'] is not None:
|
|
|
98 |
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
|
99 |
st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
|
100 |
st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
|
101 |
+
st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
|
102 |
st.write(st.session_state['ownership_dict'])
|
103 |
st.write(st.session_state['actual_dict'])
|
104 |
st.write(st.session_state['salary_dict'])
|
105 |
st.write(st.session_state['team_dict'])
|
106 |
+
st.write(st.session_state['pos_dict'])
|
107 |
|
108 |
with tab2:
|
109 |
excluded_cols = ['BaseName', 'EntryCount']
|
global_func/grab_contest_data.py
CHANGED
@@ -66,7 +66,7 @@ def grab_contest_data(sport, contest_name, contest_id_map, contest_date):
|
|
66 |
lineups_df = lineups_df.rename(columns={'index': 'Rank', 'points': 'Points', 'entryNameList': 'EntryName', 'lineupHash': 'Lineup'})
|
67 |
lineups_df['EntryName'] = lineups_df['EntryName'] + ' (1/1)'
|
68 |
lineups_df['Lineup'] = lineups_df['Lineup'].apply(lambda x: format_lineup_string(x, position_inserts))
|
69 |
-
lineups_df['Lineup'] = lineups_df['Lineup'].replace(pid_map, regex=
|
70 |
lineups_df = lineups_df[['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup']]
|
71 |
|
72 |
total_data = lineups_df.merge(players_df, how='left', left_index=True, right_index=True)
|
|
|
66 |
lineups_df = lineups_df.rename(columns={'index': 'Rank', 'points': 'Points', 'entryNameList': 'EntryName', 'lineupHash': 'Lineup'})
|
67 |
lineups_df['EntryName'] = lineups_df['EntryName'] + ' (1/1)'
|
68 |
lineups_df['Lineup'] = lineups_df['Lineup'].apply(lambda x: format_lineup_string(x, position_inserts))
|
69 |
+
lineups_df['Lineup'] = lineups_df['Lineup'].replace(pid_map, regex=False)
|
70 |
lineups_df = lineups_df[['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup']]
|
71 |
|
72 |
total_data = lineups_df.merge(players_df, how='left', left_index=True, right_index=True)
|
global_func/load_contest_file.py
CHANGED
@@ -54,12 +54,13 @@ def load_contest_file(upload, sport):
|
|
54 |
fpts_df = df[['Player', 'FPTS']]
|
55 |
salary_df = df[['Player', 'Salary']]
|
56 |
team_df = df[['Player', 'Team']]
|
|
|
57 |
cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS', 'Salary', 'Team'])
|
58 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
59 |
entry_list = list(set(df['BaseName']))
|
60 |
entry_list.sort()
|
61 |
|
62 |
-
return cleaned_df, ownership_df, fpts_df, salary_df, team_df, entry_list
|
63 |
except Exception as e:
|
64 |
st.error(f'Error loading file: {str(e)}')
|
65 |
return None
|
|
|
54 |
fpts_df = df[['Player', 'FPTS']]
|
55 |
salary_df = df[['Player', 'Salary']]
|
56 |
team_df = df[['Player', 'Team']]
|
57 |
+
pos_df = df[['Player', 'Pos']]
|
58 |
cleaned_df = df.drop(columns=['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Pos', 'Own', 'FPTS', 'Salary', 'Team'])
|
59 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
60 |
entry_list = list(set(df['BaseName']))
|
61 |
entry_list.sort()
|
62 |
|
63 |
+
return cleaned_df, ownership_df, fpts_df, salary_df, team_df, pos_df, entry_list
|
64 |
except Exception as e:
|
65 |
st.error(f'Error loading file: {str(e)}')
|
66 |
return None
|