James McCool
commited on
Commit
·
448fa4e
1
Parent(s):
f76b524
Optimize performance in app.py with vectorized operations
Browse files- Refactored multiple calculations in the app to utilize vectorized operations, significantly improving performance and efficiency. This includes stack, salary, actual_fpts, and ownership calculations, as well as unique player counts. Enhanced readability and maintainability of the code by consolidating repetitive logic.
app.py
CHANGED
@@ -204,6 +204,8 @@ with tab2:
|
|
204 |
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
|
205 |
st.session_state['stack_columns'] = [col for col in st.session_state['Contest'].columns if col not in exclude_stacks]
|
206 |
print(st.session_state['player_columns'])
|
|
|
|
|
207 |
for col in st.session_state['player_columns']:
|
208 |
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip()
|
209 |
|
@@ -215,121 +217,146 @@ with tab2:
|
|
215 |
'own_map': st.session_state['ownership_dict'],
|
216 |
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
|
217 |
}
|
|
|
218 |
# Create a copy of the dataframe for calculations
|
219 |
working_df = st.session_state['Contest'].copy()
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
if type_var == 'Classic':
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
226 |
-
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['stack_columns']]) else '',
|
227 |
-
axis=1
|
228 |
)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
)
|
236 |
-
working_df['salary'] =
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
249 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
250 |
-
lambda row: ','.join(sorted(row.values)),
|
251 |
-
axis=1
|
252 |
)
|
253 |
working_df['dupes'] = working_df.groupby('sorted').transform('size')
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
working_df['under_5'] = working_df.groupby('BaseName').
|
260 |
-
lambda x: (x
|
261 |
-
)
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
working_df = working_df.reset_index()
|
268 |
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
|
269 |
working_df['finish'] = working_df['index']
|
270 |
working_df = working_df.drop(['sorted', 'index'], axis=1)
|
271 |
|
272 |
elif type_var == 'Showdown':
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
277 |
-
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
|
278 |
-
axis=1
|
279 |
-
)
|
280 |
-
working_df['stack_size'] = working_df.apply(
|
281 |
-
lambda row: Counter(
|
282 |
-
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]
|
283 |
-
if st.session_state['map_dict']['team_map'].get(player, '') != ''
|
284 |
-
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
|
285 |
-
axis=1
|
286 |
)
|
|
|
|
|
|
|
|
|
|
|
287 |
if sport_select == 'GOLF':
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
# Modified salary calculation with 1.5x multiplier for first player
|
292 |
-
working_df['salary'] = working_df.apply(
|
293 |
-
lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
|
294 |
-
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
|
295 |
-
axis=1
|
296 |
)
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
axis=1
|
302 |
)
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
305 |
-
lambda row: ','.join(sorted(row.values)),
|
306 |
-
axis=1
|
307 |
)
|
308 |
working_df['dupes'] = working_df.groupby('sorted').transform('size')
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
working_df['under_5'] = working_df.groupby('BaseName').
|
315 |
-
lambda x: (x
|
316 |
-
)
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
working_df = working_df.reset_index()
|
323 |
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
|
324 |
working_df['finish'] = working_df['index']
|
325 |
working_df = working_df.drop(['sorted', 'index'], axis=1)
|
326 |
-
|
|
|
327 |
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns'])
|
328 |
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
|
329 |
st.session_state['display_contest_info'] = working_df.copy()
|
330 |
st.session_state['contest_info_reset'] = working_df.copy()
|
331 |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
|
332 |
-
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
|
333 |
|
334 |
if 'display_contest_info' in st.session_state:
|
335 |
with st.expander("Info and filters"):
|
@@ -354,7 +381,7 @@ with tab2:
|
|
354 |
st.session_state['remove_names'] = []
|
355 |
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy()
|
356 |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
|
357 |
-
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
|
358 |
|
359 |
with st.form(key='filter_form'):
|
360 |
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6)
|
|
|
204 |
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
|
205 |
st.session_state['stack_columns'] = [col for col in st.session_state['Contest'].columns if col not in exclude_stacks]
|
206 |
print(st.session_state['player_columns'])
|
207 |
+
|
208 |
+
# Vectorized string operations
|
209 |
for col in st.session_state['player_columns']:
|
210 |
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip()
|
211 |
|
|
|
217 |
'own_map': st.session_state['ownership_dict'],
|
218 |
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
|
219 |
}
|
220 |
+
|
221 |
# Create a copy of the dataframe for calculations
|
222 |
working_df = st.session_state['Contest'].copy()
|
223 |
+
|
224 |
+
# Pre-compute lookup arrays for vectorized operations
|
225 |
+
team_map = st.session_state['map_dict']['team_map']
|
226 |
+
salary_map = st.session_state['salary_dict']
|
227 |
+
actual_map = st.session_state['actual_dict']
|
228 |
+
ownership_map = st.session_state['ownership_dict']
|
229 |
+
|
230 |
if type_var == 'Classic':
|
231 |
+
# Vectorized stack calculation
|
232 |
+
player_teams = working_df[st.session_state['stack_columns']].apply(
|
233 |
+
lambda x: x.map(team_map).fillna('')
|
|
|
|
|
|
|
234 |
)
|
235 |
+
|
236 |
+
# Vectorized stack and stack_size calculation
|
237 |
+
def get_most_common_team(teams):
|
238 |
+
if teams.empty or teams.isna().all():
|
239 |
+
return '', 0
|
240 |
+
non_empty_teams = teams[teams != '']
|
241 |
+
if len(non_empty_teams) == 0:
|
242 |
+
return '', 0
|
243 |
+
team_counts = non_empty_teams.value_counts()
|
244 |
+
return team_counts.index[0], team_counts.iloc[0]
|
245 |
+
|
246 |
+
stack_results = player_teams.apply(get_most_common_team, axis=1)
|
247 |
+
working_df['stack'] = [result[0] for result in stack_results]
|
248 |
+
working_df['stack_size'] = [result[1] for result in stack_results]
|
249 |
+
|
250 |
+
# Vectorized salary calculation
|
251 |
+
player_salaries = working_df[st.session_state['player_columns']].apply(
|
252 |
+
lambda x: x.map(salary_map).fillna(0)
|
253 |
)
|
254 |
+
working_df['salary'] = player_salaries.sum(axis=1)
|
255 |
+
|
256 |
+
# Vectorized actual_fpts calculation
|
257 |
+
player_fpts = working_df[st.session_state['player_columns']].apply(
|
258 |
+
lambda x: x.map(actual_map).fillna(0)
|
259 |
+
)
|
260 |
+
working_df['actual_fpts'] = player_fpts.sum(axis=1)
|
261 |
+
|
262 |
+
# Vectorized actual_own calculation
|
263 |
+
player_ownership = working_df[st.session_state['player_columns']].apply(
|
264 |
+
lambda x: x.map(ownership_map).fillna(0)
|
265 |
+
)
|
266 |
+
working_df['actual_own'] = player_ownership.sum(axis=1)
|
267 |
+
|
268 |
+
# Vectorized duplication calculation
|
269 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
270 |
+
lambda row: ','.join(sorted(row.values)), axis=1
|
|
|
271 |
)
|
272 |
working_df['dupes'] = working_df.groupby('sorted').transform('size')
|
273 |
+
|
274 |
+
# Vectorized unique calculations
|
275 |
+
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform(
|
276 |
+
lambda x: (x == 1).sum()
|
277 |
+
)
|
278 |
+
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform(
|
279 |
+
lambda x: (x <= 5).sum()
|
280 |
+
)
|
281 |
+
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform(
|
282 |
+
lambda x: (x <= 10).sum()
|
283 |
+
)
|
284 |
+
|
|
|
285 |
working_df = working_df.reset_index()
|
286 |
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
|
287 |
working_df['finish'] = working_df['index']
|
288 |
working_df = working_df.drop(['sorted', 'index'], axis=1)
|
289 |
|
290 |
elif type_var == 'Showdown':
|
291 |
+
# Vectorized stack calculation for Showdown
|
292 |
+
player_teams = working_df.iloc[:, 2:].apply(
|
293 |
+
lambda x: x.map(team_map).fillna('')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
)
|
295 |
+
|
296 |
+
stack_results = player_teams.apply(get_most_common_team, axis=1)
|
297 |
+
working_df['stack'] = [result[0] for result in stack_results]
|
298 |
+
working_df['stack_size'] = [result[1] for result in stack_results]
|
299 |
+
|
300 |
if sport_select == 'GOLF':
|
301 |
+
# Vectorized calculations for GOLF
|
302 |
+
player_salaries = working_df.apply(
|
303 |
+
lambda x: x.map(salary_map).fillna(0)
|
|
|
|
|
|
|
|
|
|
|
304 |
)
|
305 |
+
working_df['salary'] = player_salaries.sum(axis=1)
|
306 |
+
|
307 |
+
player_fpts = working_df.apply(
|
308 |
+
lambda x: x.map(actual_map).fillna(0)
|
|
|
309 |
)
|
310 |
+
working_df['actual_fpts'] = player_fpts.sum(axis=1)
|
311 |
+
else:
|
312 |
+
# Vectorized calculations with 1.5x multiplier for first player
|
313 |
+
first_player_salary = working_df.iloc[:, 2].map(salary_map).fillna(0) * 1.5
|
314 |
+
other_players_salary = working_df.iloc[:, 3:].apply(
|
315 |
+
lambda x: x.map(salary_map).fillna(0)
|
316 |
+
).sum(axis=1)
|
317 |
+
working_df['salary'] = first_player_salary + other_players_salary
|
318 |
+
|
319 |
+
first_player_fpts = working_df.iloc[:, 2].map(actual_map).fillna(0) * 1.5
|
320 |
+
other_players_fpts = working_df.iloc[:, 3:].apply(
|
321 |
+
lambda x: x.map(actual_map).fillna(0)
|
322 |
+
).sum(axis=1)
|
323 |
+
working_df['actual_fpts'] = first_player_fpts + other_players_fpts
|
324 |
+
|
325 |
+
# Vectorized actual_own calculation
|
326 |
+
player_ownership = working_df.apply(
|
327 |
+
lambda x: x.map(ownership_map).fillna(0)
|
328 |
+
)
|
329 |
+
working_df['actual_own'] = player_ownership.sum(axis=1)
|
330 |
+
|
331 |
+
# Vectorized duplication calculation
|
332 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
333 |
+
lambda row: ','.join(sorted(row.values)), axis=1
|
|
|
334 |
)
|
335 |
working_df['dupes'] = working_df.groupby('sorted').transform('size')
|
336 |
+
|
337 |
+
# Vectorized unique calculations
|
338 |
+
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform(
|
339 |
+
lambda x: (x == 1).sum()
|
340 |
+
)
|
341 |
+
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform(
|
342 |
+
lambda x: (x <= 5).sum()
|
343 |
+
)
|
344 |
+
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform(
|
345 |
+
lambda x: (x <= 10).sum()
|
346 |
+
)
|
347 |
+
|
|
|
348 |
working_df = working_df.reset_index()
|
349 |
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
|
350 |
working_df['finish'] = working_df['index']
|
351 |
working_df = working_df.drop(['sorted', 'index'], axis=1)
|
352 |
+
|
353 |
+
# Store results
|
354 |
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns'])
|
355 |
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
|
356 |
st.session_state['display_contest_info'] = working_df.copy()
|
357 |
st.session_state['contest_info_reset'] = working_df.copy()
|
358 |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
|
359 |
+
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
|
360 |
|
361 |
if 'display_contest_info' in st.session_state:
|
362 |
with st.expander("Info and filters"):
|
|
|
381 |
st.session_state['remove_names'] = []
|
382 |
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy()
|
383 |
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
|
384 |
+
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
|
385 |
|
386 |
with st.form(key='filter_form'):
|
387 |
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6)
|