James McCool
commited on
Commit
·
45a70a9
1
Parent(s):
f49d54b
Refactor app.py to utilize create_player_exposures function
Browse files- Replaced repetitive code for calculating player exposures with a new function, create_player_exposures, improving code maintainability and readability.
- Streamlined the handling of player exposure data for both 'All' and specific entry names, enhancing performance and clarity in the application.
- app.py +4 -54
- global_func/create_player_exposures.py +33 -0
app.py
CHANGED
@@ -7,15 +7,10 @@ from fuzzywuzzy import process
|
|
7 |
from collections import Counter
|
8 |
|
9 |
## import global functions
|
10 |
-
from global_func.clean_player_name import clean_player_name
|
11 |
from global_func.load_contest_file import load_contest_file
|
12 |
from global_func.load_file import load_file
|
13 |
-
from global_func.load_ss_file import load_ss_file
|
14 |
from global_func.find_name_mismatches import find_name_mismatches
|
15 |
-
from global_func.
|
16 |
-
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
|
17 |
-
from global_func.load_csv import load_csv
|
18 |
-
from global_func.find_csv_mismatches import find_csv_mismatches
|
19 |
|
20 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
21 |
if 'calc_toggle' not in st.session_state:
|
@@ -239,61 +234,16 @@ with tab2:
|
|
239 |
with st.container():
|
240 |
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Duplication Info'])
|
241 |
with tab1:
|
|
|
242 |
if entry_parse_var == 'All':
|
243 |
-
|
244 |
-
top_1per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
|
245 |
-
top_5per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
|
246 |
-
top_10per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
|
247 |
-
top_20per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
|
248 |
-
contest_len = len(working_df)
|
249 |
-
len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
|
250 |
-
len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
|
251 |
-
len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
|
252 |
-
len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
|
253 |
-
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
254 |
-
each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
|
255 |
-
each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
|
256 |
-
player_count_var = 0
|
257 |
-
for each_set in each_frame_set:
|
258 |
-
set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
|
259 |
-
set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
|
260 |
-
set_frame = set_frame[['Player', 'Percent']]
|
261 |
-
set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
|
262 |
-
if 'player_frame' not in st.session_state:
|
263 |
-
st.session_state['player_frame'] = set_frame
|
264 |
-
else:
|
265 |
-
st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer')
|
266 |
-
player_count_var += 1
|
267 |
st.dataframe(st.session_state['player_frame'].
|
268 |
sort_values(by='Exposure Overall', ascending=False).
|
269 |
style.background_gradient(cmap='RdYlGn').
|
270 |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
271 |
hide_index=True)
|
272 |
else:
|
273 |
-
|
274 |
-
top_1per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
|
275 |
-
top_5per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
|
276 |
-
top_10per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
|
277 |
-
top_20per_players = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
|
278 |
-
contest_len = len(working_df)
|
279 |
-
len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
|
280 |
-
len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
|
281 |
-
len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
|
282 |
-
len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
|
283 |
-
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
284 |
-
each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
|
285 |
-
each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
|
286 |
-
player_count_var = 0
|
287 |
-
for each_set in each_frame_set:
|
288 |
-
set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
|
289 |
-
set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
|
290 |
-
set_frame = set_frame[['Player', 'Percent']]
|
291 |
-
set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
|
292 |
-
if 'player_frame' not in st.session_state:
|
293 |
-
st.session_state['player_frame'] = set_frame
|
294 |
-
else:
|
295 |
-
st.session_state['player_frame'] = pd.merge(st.session_state['player_frame'], set_frame, on='Player', how='outer')
|
296 |
-
player_count_var += 1
|
297 |
st.dataframe(st.session_state['player_frame'].
|
298 |
sort_values(by='Exposure Overall', ascending=False).
|
299 |
style.background_gradient(cmap='RdYlGn').
|
|
|
7 |
from collections import Counter
|
8 |
|
9 |
## import global functions
|
|
|
10 |
from global_func.load_contest_file import load_contest_file
|
11 |
from global_func.load_file import load_file
|
|
|
12 |
from global_func.find_name_mismatches import find_name_mismatches
|
13 |
+
from global_func.create_player_exposures import create_player_exposures
|
|
|
|
|
|
|
14 |
|
15 |
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
|
16 |
if 'calc_toggle' not in st.session_state:
|
|
|
234 |
with st.container():
|
235 |
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Duplication Info'])
|
236 |
with tab1:
|
237 |
+
st.session_state['field_frame'] = create_player_exposures(working_df, player_columns)
|
238 |
if entry_parse_var == 'All':
|
239 |
+
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
st.dataframe(st.session_state['player_frame'].
|
241 |
sort_values(by='Exposure Overall', ascending=False).
|
242 |
style.background_gradient(cmap='RdYlGn').
|
243 |
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
244 |
hide_index=True)
|
245 |
else:
|
246 |
+
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
st.dataframe(st.session_state['player_frame'].
|
248 |
sort_values(by='Exposure Overall', ascending=False).
|
249 |
style.background_gradient(cmap='RdYlGn').
|
global_func/create_player_exposures.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def create_player_exposures(df: pd.DataFrame, player_columns: list, entrants: list = None):
|
4 |
+
player_frame = pd.DataFrame()
|
5 |
+
if entrants is not None:
|
6 |
+
overall_players = pd.Series(list(df[df['BaseName'].isin(entrants)][player_columns].values.flatten())).value_counts()
|
7 |
+
else:
|
8 |
+
overall_players = pd.Series(list(df[player_columns].values.flatten())).value_counts()
|
9 |
+
top_1per_players = pd.Series(list(df[df['percentile_finish'] <= 0.01][player_columns].values.flatten())).value_counts()
|
10 |
+
top_5per_players = pd.Series(list(df[df['percentile_finish'] <= 0.05][player_columns].values.flatten())).value_counts()
|
11 |
+
top_10per_players = pd.Series(list(df[df['percentile_finish'] <= 0.10][player_columns].values.flatten())).value_counts()
|
12 |
+
top_20per_players = pd.Series(list(df[df['percentile_finish'] <= 0.20][player_columns].values.flatten())).value_counts()
|
13 |
+
contest_len = len(df)
|
14 |
+
len_1per = len(df[df['percentile_finish'] <= 0.01])
|
15 |
+
len_5per = len(df[df['percentile_finish'] <= 0.05])
|
16 |
+
len_10per = len(df[df['percentile_finish'] <= 0.10])
|
17 |
+
len_20per = len(df[df['percentile_finish'] <= 0.20])
|
18 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
19 |
+
each_frame_set = [overall_players, top_1per_players, top_5per_players, top_10per_players, top_20per_players]
|
20 |
+
each_len_set = [contest_len, len_1per, len_5per, len_10per, len_20per]
|
21 |
+
player_count_var = 0
|
22 |
+
for each_set in each_frame_set:
|
23 |
+
set_frame = each_set.to_frame().reset_index().rename(columns={'index': 'Player', 'count': 'Count'})
|
24 |
+
set_frame['Percent'] = set_frame['Count'] / each_len_set[player_count_var]
|
25 |
+
set_frame = set_frame[['Player', 'Percent']]
|
26 |
+
set_frame = set_frame.rename(columns={'Percent': f'Exposure {each_set_name[player_count_var]}'})
|
27 |
+
if len(player_frame) == 0:
|
28 |
+
player_frame = set_frame
|
29 |
+
else:
|
30 |
+
player_frame = pd.merge(player_frame, set_frame, on='Player', how='outer')
|
31 |
+
player_count_var += 1
|
32 |
+
|
33 |
+
return player_frame
|