James McCool
commited on
Commit
·
58cea02
1
Parent(s):
cdad3f2
Initial commit
Browse files- app.py +1003 -0
- app.yaml +10 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,1003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import time
|
6 |
+
from fuzzywuzzy import process
|
7 |
+
import random
|
8 |
+
|
9 |
+
## import global functions
|
10 |
+
from global_func.clean_player_name import clean_player_name
|
11 |
+
from global_func.load_file import load_file
|
12 |
+
from global_func.load_ss_file import load_ss_file
|
13 |
+
from global_func.find_name_mismatches import find_name_mismatches
|
14 |
+
from global_func.predict_dupes import predict_dupes
|
15 |
+
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
|
16 |
+
from global_func.load_csv import load_csv
|
17 |
+
from global_func.find_csv_mismatches import find_csv_mismatches
|
18 |
+
|
19 |
+
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
20 |
+
player_wrong_names_mlb = ['Enrique Hernandez']
|
21 |
+
player_right_names_mlb = ['Kike Hernandez']
|
22 |
+
|
23 |
+
tab1, tab2, tab3 = st.tabs(["Data Load", "Late Swap", "Manage Portfolio"])
|
24 |
+
with tab1:
|
25 |
+
if st.button('Clear data', key='reset1'):
|
26 |
+
st.session_state.clear()
|
27 |
+
# Add file uploaders to your app
|
28 |
+
col1, col2, col3 = st.columns(3)
|
29 |
+
|
30 |
+
with col1:
|
31 |
+
st.subheader("Draftkings/Fanduel CSV")
|
32 |
+
st.info("Upload the player pricing CSV from the site you are playing on. This is used in late swap exporting and/or with SaberSim portfolios, but is not necessary for the portfolio management functions.")
|
33 |
+
|
34 |
+
upload_csv_col, csv_template_col = st.columns([3, 1])
|
35 |
+
with upload_csv_col:
|
36 |
+
csv_file = st.file_uploader("Upload CSV File", type=['csv'])
|
37 |
+
if 'csv_file' in st.session_state:
|
38 |
+
del st.session_state['csv_file']
|
39 |
+
with csv_template_col:
|
40 |
+
|
41 |
+
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
|
42 |
+
|
43 |
+
st.download_button(
|
44 |
+
label="CSV Template",
|
45 |
+
data=csv_template_df.to_csv(index=False),
|
46 |
+
file_name="csv_template.csv",
|
47 |
+
mime="text/csv"
|
48 |
+
)
|
49 |
+
st.session_state['csv_file'] = load_csv(csv_file)
|
50 |
+
try:
|
51 |
+
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
|
52 |
+
except:
|
53 |
+
pass
|
54 |
+
|
55 |
+
if csv_file:
|
56 |
+
st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
|
57 |
+
st.success('Projections file loaded successfully!')
|
58 |
+
st.dataframe(st.session_state['csv_file'].head(10))
|
59 |
+
|
60 |
+
with col2:
|
61 |
+
st.subheader("Portfolio File")
|
62 |
+
st.info("Go ahead and upload a portfolio file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
|
63 |
+
saber_toggle = st.radio("Are you uploading from SaberSim?", options=['No', 'Yes'])
|
64 |
+
st.info("If you are uploading from SaberSim, you will need to upload a CSV file for the slate for name matching.")
|
65 |
+
if saber_toggle == 'Yes':
|
66 |
+
if csv_file is not None:
|
67 |
+
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
68 |
+
if 'portfolio' in st.session_state:
|
69 |
+
del st.session_state['portfolio']
|
70 |
+
if 'export_portfolio' in st.session_state:
|
71 |
+
del st.session_state['export_portfolio']
|
72 |
+
|
73 |
+
else:
|
74 |
+
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
75 |
+
if 'portfolio' in st.session_state:
|
76 |
+
del st.session_state['portfolio']
|
77 |
+
if 'export_portfolio' in st.session_state:
|
78 |
+
del st.session_state['export_portfolio']
|
79 |
+
|
80 |
+
if portfolio_file:
|
81 |
+
if saber_toggle == 'Yes':
|
82 |
+
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'])
|
83 |
+
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
|
84 |
+
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
|
85 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
|
86 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
|
87 |
+
else:
|
88 |
+
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file)
|
89 |
+
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
|
90 |
+
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
|
91 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
|
92 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
|
93 |
+
# Check if Stack column exists in the portfolio
|
94 |
+
if 'Stack' in st.session_state['portfolio'].columns:
|
95 |
+
# Create dictionary mapping index to Stack values
|
96 |
+
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
|
97 |
+
st.write(f"Found {len(stack_dict)} stack assignments")
|
98 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
|
99 |
+
else:
|
100 |
+
stack_dict = None
|
101 |
+
st.info("No Stack column found in portfolio")
|
102 |
+
if st.session_state['portfolio'] is not None:
|
103 |
+
st.success('Portfolio file loaded successfully!')
|
104 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
105 |
+
st.dataframe(st.session_state['portfolio'].head(10))
|
106 |
+
|
107 |
+
with col3:
|
108 |
+
st.subheader("Projections File")
|
109 |
+
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' (Needed for Showdown) columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
|
110 |
+
|
111 |
+
# Create two columns for the uploader and template button
|
112 |
+
upload_col, template_col = st.columns([3, 1])
|
113 |
+
|
114 |
+
with upload_col:
|
115 |
+
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
116 |
+
if 'projections_df' in st.session_state:
|
117 |
+
del st.session_state['projections_df']
|
118 |
+
|
119 |
+
with template_col:
|
120 |
+
# Create empty DataFrame with required columns
|
121 |
+
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
|
122 |
+
# Add download button for template
|
123 |
+
st.download_button(
|
124 |
+
label="Template",
|
125 |
+
data=template_df.to_csv(index=False),
|
126 |
+
file_name="projections_template.csv",
|
127 |
+
mime="text/csv"
|
128 |
+
)
|
129 |
+
|
130 |
+
if projections_file:
|
131 |
+
export_projections, projections = load_file(projections_file)
|
132 |
+
if projections is not None:
|
133 |
+
st.success('Projections file loaded successfully!')
|
134 |
+
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
135 |
+
st.dataframe(projections.head(10))
|
136 |
+
|
137 |
+
if portfolio_file and projections_file:
|
138 |
+
if st.session_state['portfolio'] is not None and projections is not None:
|
139 |
+
st.subheader("Name Matching Analysis")
|
140 |
+
# Initialize projections_df in session state if it doesn't exist
|
141 |
+
if 'projections_df' not in st.session_state:
|
142 |
+
st.session_state['projections_df'] = projections.copy()
|
143 |
+
st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
|
144 |
+
|
145 |
+
# Update projections_df with any new matches
|
146 |
+
st.session_state['projections_df'] = find_name_mismatches(st.session_state['portfolio'], st.session_state['projections_df'])
|
147 |
+
if csv_file is not None and 'export_dict' not in st.session_state:
|
148 |
+
# Create a dictionary of Name to Name+ID from csv_file
|
149 |
+
try:
|
150 |
+
name_id_map = dict(zip(
|
151 |
+
st.session_state['csv_file']['Name'],
|
152 |
+
st.session_state['csv_file']['Name + ID']
|
153 |
+
))
|
154 |
+
except:
|
155 |
+
name_id_map = dict(zip(
|
156 |
+
st.session_state['csv_file']['Nickname'],
|
157 |
+
st.session_state['csv_file']['Id']
|
158 |
+
))
|
159 |
+
|
160 |
+
# Function to find best match
|
161 |
+
def find_best_match(name):
|
162 |
+
best_match = process.extractOne(name, name_id_map.keys())
|
163 |
+
if best_match and best_match[1] >= 85: # 85% match threshold
|
164 |
+
return name_id_map[best_match[0]]
|
165 |
+
return name # Return original name if no good match found
|
166 |
+
|
167 |
+
# Apply the matching
|
168 |
+
projections['upload_match'] = projections['player_names'].apply(find_best_match)
|
169 |
+
st.session_state['export_dict'] = dict(zip(projections['player_names'], projections['upload_match']))
|
170 |
+
|
171 |
+
with tab2:
|
172 |
+
if st.button('Clear data', key='reset2'):
|
173 |
+
st.session_state.clear()
|
174 |
+
|
175 |
+
if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
|
176 |
+
|
177 |
+
optimized_df = None
|
178 |
+
|
179 |
+
map_dict = {
|
180 |
+
'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
|
181 |
+
st.session_state['projections_df']['position'])),
|
182 |
+
'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
|
183 |
+
st.session_state['projections_df']['salary'])),
|
184 |
+
'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
|
185 |
+
st.session_state['projections_df']['median'])),
|
186 |
+
'own_map': dict(zip(st.session_state['projections_df']['player_names'],
|
187 |
+
st.session_state['projections_df']['ownership'])),
|
188 |
+
'team_map': dict(zip(st.session_state['projections_df']['player_names'],
|
189 |
+
st.session_state['projections_df']['team']))
|
190 |
+
}
|
191 |
+
# Calculate new stats for optimized lineups
|
192 |
+
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
|
193 |
+
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
|
194 |
+
)
|
195 |
+
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
|
196 |
+
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
|
197 |
+
)
|
198 |
+
|
199 |
+
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
|
200 |
+
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
|
201 |
+
)
|
202 |
+
|
203 |
+
options_container = st.container()
|
204 |
+
with options_container:
|
205 |
+
col1, col2, col3, col4, col5, col6 = st.columns(6)
|
206 |
+
with col1:
|
207 |
+
curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
|
208 |
+
with col2:
|
209 |
+
curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
|
210 |
+
with col3:
|
211 |
+
swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
|
212 |
+
with col4:
|
213 |
+
remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
|
214 |
+
with col5:
|
215 |
+
winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
|
216 |
+
with col6:
|
217 |
+
losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
|
218 |
+
if st.button('Clear Late Swap'):
|
219 |
+
if 'optimized_df' in st.session_state:
|
220 |
+
del st.session_state['optimized_df']
|
221 |
+
|
222 |
+
map_dict = {
|
223 |
+
'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
|
224 |
+
st.session_state['projections_df']['position'])),
|
225 |
+
'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
|
226 |
+
st.session_state['projections_df']['salary'])),
|
227 |
+
'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
|
228 |
+
st.session_state['projections_df']['median'])),
|
229 |
+
'own_map': dict(zip(st.session_state['projections_df']['player_names'],
|
230 |
+
st.session_state['projections_df']['ownership'])),
|
231 |
+
'team_map': dict(zip(st.session_state['projections_df']['player_names'],
|
232 |
+
st.session_state['projections_df']['team']))
|
233 |
+
}
|
234 |
+
# Calculate new stats for optimized lineups
|
235 |
+
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
|
236 |
+
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
|
237 |
+
)
|
238 |
+
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
|
239 |
+
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
|
240 |
+
)
|
241 |
+
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
|
242 |
+
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
|
243 |
+
)
|
244 |
+
|
245 |
+
if st.button('Run Late Swap'):
|
246 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
|
247 |
+
if curr_sport_var == 'NBA':
|
248 |
+
if curr_site_var == 'DraftKings':
|
249 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
|
250 |
+
else:
|
251 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
|
252 |
+
|
253 |
+
# Define roster position rules
|
254 |
+
if curr_site_var == 'DraftKings':
|
255 |
+
position_rules = {
|
256 |
+
'PG': ['PG'],
|
257 |
+
'SG': ['SG'],
|
258 |
+
'SF': ['SF'],
|
259 |
+
'PF': ['PF'],
|
260 |
+
'C': ['C'],
|
261 |
+
'G': ['PG', 'SG'],
|
262 |
+
'F': ['SF', 'PF'],
|
263 |
+
'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
|
264 |
+
}
|
265 |
+
else:
|
266 |
+
position_rules = {
|
267 |
+
'PG': ['PG'],
|
268 |
+
'SG': ['SG'],
|
269 |
+
'SF': ['SF'],
|
270 |
+
'PF': ['PF'],
|
271 |
+
'C': ['C'],
|
272 |
+
}
|
273 |
+
# Create position groups from projections data
|
274 |
+
position_groups = {}
|
275 |
+
for _, player in st.session_state['projections_df'].iterrows():
|
276 |
+
positions = player['position'].split('/')
|
277 |
+
for pos in positions:
|
278 |
+
if pos not in position_groups:
|
279 |
+
position_groups[pos] = []
|
280 |
+
position_groups[pos].append({
|
281 |
+
'player_names': player['player_names'],
|
282 |
+
'salary': player['salary'],
|
283 |
+
'median': player['median'],
|
284 |
+
'ownership': player['ownership'],
|
285 |
+
'positions': positions # Store all eligible positions
|
286 |
+
})
|
287 |
+
|
288 |
+
def optimize_lineup(row):
|
289 |
+
current_lineup = []
|
290 |
+
total_salary = 0
|
291 |
+
if curr_site_var == 'DraftKings':
|
292 |
+
salary_cap = 50000
|
293 |
+
else:
|
294 |
+
salary_cap = 60000
|
295 |
+
used_players = set()
|
296 |
+
|
297 |
+
# Convert row to dictionary with roster positions
|
298 |
+
roster = {}
|
299 |
+
for col, player in zip(row.index, row):
|
300 |
+
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
|
301 |
+
roster[col] = {
|
302 |
+
'name': player,
|
303 |
+
'position': map_dict['pos_map'].get(player, '').split('/'),
|
304 |
+
'team': map_dict['team_map'].get(player, ''),
|
305 |
+
'salary': map_dict['salary_map'].get(player, 0),
|
306 |
+
'median': map_dict['proj_map'].get(player, 0),
|
307 |
+
'ownership': map_dict['own_map'].get(player, 0)
|
308 |
+
}
|
309 |
+
total_salary += roster[col]['salary']
|
310 |
+
used_players.add(player)
|
311 |
+
|
312 |
+
# Optimize each roster position in random order
|
313 |
+
roster_positions = list(roster.items())
|
314 |
+
random.shuffle(roster_positions)
|
315 |
+
|
316 |
+
for roster_pos, current in roster_positions:
|
317 |
+
# Skip optimization for players from removed teams
|
318 |
+
if current['team'] in remove_teams_var:
|
319 |
+
continue
|
320 |
+
|
321 |
+
valid_positions = position_rules[roster_pos]
|
322 |
+
better_options = []
|
323 |
+
|
324 |
+
# Find valid replacements for this roster position
|
325 |
+
for pos in valid_positions:
|
326 |
+
if pos in position_groups:
|
327 |
+
pos_options = [
|
328 |
+
p for p in position_groups[pos]
|
329 |
+
if p['median'] > current['median']
|
330 |
+
and (total_salary - current['salary'] + p['salary']) <= salary_cap
|
331 |
+
and p['player_names'] not in used_players
|
332 |
+
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
|
333 |
+
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction
|
334 |
+
]
|
335 |
+
better_options.extend(pos_options)
|
336 |
+
|
337 |
+
if better_options:
|
338 |
+
# Remove duplicates
|
339 |
+
better_options = {opt['player_names']: opt for opt in better_options}.values()
|
340 |
+
|
341 |
+
# Sort by median projection and take the best one
|
342 |
+
best_replacement = max(better_options, key=lambda x: x['median'])
|
343 |
+
|
344 |
+
# Update the lineup and tracking variables
|
345 |
+
used_players.remove(current['name'])
|
346 |
+
used_players.add(best_replacement['player_names'])
|
347 |
+
total_salary = total_salary - current['salary'] + best_replacement['salary']
|
348 |
+
roster[roster_pos] = {
|
349 |
+
'name': best_replacement['player_names'],
|
350 |
+
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
|
351 |
+
'team': map_dict['team_map'][best_replacement['player_names']],
|
352 |
+
'salary': best_replacement['salary'],
|
353 |
+
'median': best_replacement['median'],
|
354 |
+
'ownership': best_replacement['ownership']
|
355 |
+
}
|
356 |
+
|
357 |
+
# Return optimized lineup maintaining original column order
|
358 |
+
return [roster[pos]['name'] for pos in row.index if pos in roster]
|
359 |
+
|
360 |
+
def optimize_lineup_winners(row):
|
361 |
+
current_lineup = []
|
362 |
+
total_salary = 0
|
363 |
+
if curr_site_var == 'DraftKings':
|
364 |
+
salary_cap = 50000
|
365 |
+
else:
|
366 |
+
salary_cap = 60000
|
367 |
+
used_players = set()
|
368 |
+
|
369 |
+
# Check if any winners are in the lineup and count them
|
370 |
+
winners_in_lineup = sum(1 for player in row if player in winners_var)
|
371 |
+
changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
|
372 |
+
changes_made = 0
|
373 |
+
|
374 |
+
# Convert row to dictionary with roster positions
|
375 |
+
roster = {}
|
376 |
+
for col, player in zip(row.index, row):
|
377 |
+
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
|
378 |
+
roster[col] = {
|
379 |
+
'name': player,
|
380 |
+
'position': map_dict['pos_map'].get(player, '').split('/'),
|
381 |
+
'team': map_dict['team_map'].get(player, ''),
|
382 |
+
'salary': map_dict['salary_map'].get(player, 0),
|
383 |
+
'median': map_dict['proj_map'].get(player, 0),
|
384 |
+
'ownership': map_dict['own_map'].get(player, 0)
|
385 |
+
}
|
386 |
+
total_salary += roster[col]['salary']
|
387 |
+
used_players.add(player)
|
388 |
+
|
389 |
+
# Only proceed with ownership-based optimization if we have winners in the lineup
|
390 |
+
if changes_needed > 0:
|
391 |
+
# Randomize the order of positions to optimize
|
392 |
+
roster_positions = list(roster.items())
|
393 |
+
random.shuffle(roster_positions)
|
394 |
+
|
395 |
+
for roster_pos, current in roster_positions:
|
396 |
+
# Stop if we've made enough changes
|
397 |
+
if changes_made >= changes_needed:
|
398 |
+
break
|
399 |
+
|
400 |
+
# Skip optimization for players from removed teams or if the current player is a winner
|
401 |
+
if current['team'] in remove_teams_var or current['name'] in winners_var:
|
402 |
+
continue
|
403 |
+
|
404 |
+
valid_positions = list(position_rules[roster_pos])
|
405 |
+
random.shuffle(valid_positions)
|
406 |
+
better_options = []
|
407 |
+
|
408 |
+
# Find valid replacements with higher ownership
|
409 |
+
for pos in valid_positions:
|
410 |
+
if pos in position_groups:
|
411 |
+
pos_options = [
|
412 |
+
p for p in position_groups[pos]
|
413 |
+
if p['ownership'] > current['ownership']
|
414 |
+
and p['median'] >= current['median'] - 3
|
415 |
+
and (total_salary - current['salary'] + p['salary']) <= salary_cap
|
416 |
+
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
|
417 |
+
and p['player_names'] not in used_players
|
418 |
+
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
|
419 |
+
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
|
420 |
+
]
|
421 |
+
better_options.extend(pos_options)
|
422 |
+
|
423 |
+
if better_options:
|
424 |
+
# Remove duplicates
|
425 |
+
better_options = {opt['player_names']: opt for opt in better_options}.values()
|
426 |
+
|
427 |
+
# Sort by ownership and take the highest owned option
|
428 |
+
best_replacement = max(better_options, key=lambda x: x['ownership'])
|
429 |
+
|
430 |
+
# Update the lineup and tracking variables
|
431 |
+
used_players.remove(current['name'])
|
432 |
+
used_players.add(best_replacement['player_names'])
|
433 |
+
total_salary = total_salary - current['salary'] + best_replacement['salary']
|
434 |
+
roster[roster_pos] = {
|
435 |
+
'name': best_replacement['player_names'],
|
436 |
+
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
|
437 |
+
'team': map_dict['team_map'][best_replacement['player_names']],
|
438 |
+
'salary': best_replacement['salary'],
|
439 |
+
'median': best_replacement['median'],
|
440 |
+
'ownership': best_replacement['ownership']
|
441 |
+
}
|
442 |
+
changes_made += 1
|
443 |
+
|
444 |
+
# Return optimized lineup maintaining original column order
|
445 |
+
return [roster[pos]['name'] for pos in row.index if pos in roster]
|
446 |
+
|
447 |
+
def optimize_lineup_losers(row):
|
448 |
+
current_lineup = []
|
449 |
+
total_salary = 0
|
450 |
+
if curr_site_var == 'DraftKings':
|
451 |
+
salary_cap = 50000
|
452 |
+
else:
|
453 |
+
salary_cap = 60000
|
454 |
+
used_players = set()
|
455 |
+
|
456 |
+
# Check if any winners are in the lineup and count them
|
457 |
+
losers_in_lineup = sum(1 for player in row if player in losers_var)
|
458 |
+
changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
|
459 |
+
changes_made = 0
|
460 |
+
|
461 |
+
# Convert row to dictionary with roster positions
|
462 |
+
roster = {}
|
463 |
+
for col, player in zip(row.index, row):
|
464 |
+
if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
|
465 |
+
roster[col] = {
|
466 |
+
'name': player,
|
467 |
+
'position': map_dict['pos_map'].get(player, '').split('/'),
|
468 |
+
'team': map_dict['team_map'].get(player, ''),
|
469 |
+
'salary': map_dict['salary_map'].get(player, 0),
|
470 |
+
'median': map_dict['proj_map'].get(player, 0),
|
471 |
+
'ownership': map_dict['own_map'].get(player, 0)
|
472 |
+
}
|
473 |
+
total_salary += roster[col]['salary']
|
474 |
+
used_players.add(player)
|
475 |
+
|
476 |
+
# Only proceed with ownership-based optimization if we have winners in the lineup
|
477 |
+
if changes_needed > 0:
|
478 |
+
# Randomize the order of positions to optimize
|
479 |
+
roster_positions = list(roster.items())
|
480 |
+
random.shuffle(roster_positions)
|
481 |
+
|
482 |
+
for roster_pos, current in roster_positions:
|
483 |
+
# Stop if we've made enough changes
|
484 |
+
if changes_made >= changes_needed:
|
485 |
+
break
|
486 |
+
|
487 |
+
# Skip optimization for players from removed teams or if the current player is a winner
|
488 |
+
if current['team'] in remove_teams_var or current['name'] in losers_var:
|
489 |
+
continue
|
490 |
+
|
491 |
+
valid_positions = list(position_rules[roster_pos])
|
492 |
+
random.shuffle(valid_positions)
|
493 |
+
better_options = []
|
494 |
+
|
495 |
+
# Find valid replacements with higher ownership
|
496 |
+
for pos in valid_positions:
|
497 |
+
if pos in position_groups:
|
498 |
+
pos_options = [
|
499 |
+
p for p in position_groups[pos]
|
500 |
+
if p['ownership'] < current['ownership']
|
501 |
+
and p['median'] >= current['median'] - 3
|
502 |
+
and (total_salary - current['salary'] + p['salary']) <= salary_cap
|
503 |
+
and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
|
504 |
+
and p['player_names'] not in used_players
|
505 |
+
and any(valid_pos in p['positions'] for valid_pos in valid_positions)
|
506 |
+
and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
|
507 |
+
]
|
508 |
+
better_options.extend(pos_options)
|
509 |
+
|
510 |
+
if better_options:
|
511 |
+
# Remove duplicates
|
512 |
+
better_options = {opt['player_names']: opt for opt in better_options}.values()
|
513 |
+
|
514 |
+
# Sort by ownership and take the highest owned option
|
515 |
+
best_replacement = max(better_options, key=lambda x: x['ownership'])
|
516 |
+
|
517 |
+
# Update the lineup and tracking variables
|
518 |
+
used_players.remove(current['name'])
|
519 |
+
used_players.add(best_replacement['player_names'])
|
520 |
+
total_salary = total_salary - current['salary'] + best_replacement['salary']
|
521 |
+
roster[roster_pos] = {
|
522 |
+
'name': best_replacement['player_names'],
|
523 |
+
'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
|
524 |
+
'team': map_dict['team_map'][best_replacement['player_names']],
|
525 |
+
'salary': best_replacement['salary'],
|
526 |
+
'median': best_replacement['median'],
|
527 |
+
'ownership': best_replacement['ownership']
|
528 |
+
}
|
529 |
+
changes_made += 1
|
530 |
+
|
531 |
+
# Return optimized lineup maintaining original column order
|
532 |
+
return [roster[pos]['name'] for pos in row.index if pos in roster]
|
533 |
+
|
534 |
+
# Create a progress bar
|
535 |
+
progress_bar = st.progress(0)
|
536 |
+
status_text = st.empty()
|
537 |
+
|
538 |
+
# Process each lineup
|
539 |
+
optimized_lineups = []
|
540 |
+
total_lineups = len(st.session_state['portfolio'])
|
541 |
+
|
542 |
+
for idx, row in st.session_state['portfolio'].iterrows():
|
543 |
+
# First optimization pass
|
544 |
+
first_pass = optimize_lineup(row)
|
545 |
+
first_pass_series = pd.Series(first_pass, index=row.index)
|
546 |
+
|
547 |
+
second_pass = optimize_lineup(first_pass_series)
|
548 |
+
second_pass_series = pd.Series(second_pass, index=row.index)
|
549 |
+
|
550 |
+
third_pass = optimize_lineup(second_pass_series)
|
551 |
+
third_pass_series = pd.Series(third_pass, index=row.index)
|
552 |
+
|
553 |
+
fourth_pass = optimize_lineup(third_pass_series)
|
554 |
+
fourth_pass_series = pd.Series(fourth_pass, index=row.index)
|
555 |
+
|
556 |
+
fifth_pass = optimize_lineup(fourth_pass_series)
|
557 |
+
fifth_pass_series = pd.Series(fifth_pass, index=row.index)
|
558 |
+
|
559 |
+
# Second optimization pass
|
560 |
+
final_lineup = optimize_lineup(fifth_pass_series)
|
561 |
+
optimized_lineups.append(final_lineup)
|
562 |
+
|
563 |
+
if 'Optimize' in swap_var:
|
564 |
+
progress = (idx + 1) / total_lineups
|
565 |
+
progress_bar.progress(progress)
|
566 |
+
status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
|
567 |
+
else:
|
568 |
+
pass
|
569 |
+
|
570 |
+
# Create new dataframe with optimized lineups
|
571 |
+
if 'Optimize' in swap_var:
|
572 |
+
st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
|
573 |
+
else:
|
574 |
+
st.session_state['optimized_df_medians'] = st.session_state['portfolio']
|
575 |
+
|
576 |
+
# Create a progress bar
|
577 |
+
progress_bar_winners = st.progress(0)
|
578 |
+
status_text_winners = st.empty()
|
579 |
+
|
580 |
+
# Process each lineup
|
581 |
+
optimized_lineups_winners = []
|
582 |
+
total_lineups = len(st.session_state['optimized_df_medians'])
|
583 |
+
|
584 |
+
for idx, row in st.session_state['optimized_df_medians'].iterrows():
|
585 |
+
|
586 |
+
final_lineup = optimize_lineup_winners(row)
|
587 |
+
optimized_lineups_winners.append(final_lineup)
|
588 |
+
|
589 |
+
if 'Decrease volatility' in swap_var:
|
590 |
+
progress_winners = (idx + 1) / total_lineups
|
591 |
+
progress_bar_winners.progress(progress_winners)
|
592 |
+
status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
|
593 |
+
else:
|
594 |
+
pass
|
595 |
+
|
596 |
+
# Create new dataframe with optimized lineups
|
597 |
+
if 'Decrease volatility' in swap_var:
|
598 |
+
st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
|
599 |
+
else:
|
600 |
+
st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']
|
601 |
+
|
602 |
+
# Create a progress bar
|
603 |
+
progress_bar_losers = st.progress(0)
|
604 |
+
status_text_losers = st.empty()
|
605 |
+
|
606 |
+
# Process each lineup
|
607 |
+
optimized_lineups_losers = []
|
608 |
+
total_lineups = len(st.session_state['optimized_df_winners'])
|
609 |
+
|
610 |
+
for idx, row in st.session_state['optimized_df_winners'].iterrows():
|
611 |
+
|
612 |
+
final_lineup = optimize_lineup_losers(row)
|
613 |
+
optimized_lineups_losers.append(final_lineup)
|
614 |
+
|
615 |
+
if 'Increase volatility' in swap_var:
|
616 |
+
progress_losers = (idx + 1) / total_lineups
|
617 |
+
progress_bar_losers.progress(progress_losers)
|
618 |
+
status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
|
619 |
+
else:
|
620 |
+
pass
|
621 |
+
|
622 |
+
# Create new dataframe with optimized lineups
|
623 |
+
if 'Increase volatility' in swap_var:
|
624 |
+
st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
|
625 |
+
else:
|
626 |
+
st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
|
627 |
+
|
628 |
+
# Calculate new stats for optimized lineups
|
629 |
+
st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
|
630 |
+
lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
|
631 |
+
)
|
632 |
+
st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
|
633 |
+
lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
|
634 |
+
)
|
635 |
+
st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
|
636 |
+
lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
|
637 |
+
)
|
638 |
+
|
639 |
+
# Display results
|
640 |
+
st.success('Optimization complete!')
|
641 |
+
|
642 |
+
if 'optimized_df' in st.session_state:
|
643 |
+
st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
|
644 |
+
st.dataframe(
|
645 |
+
st.session_state['optimized_df'].style
|
646 |
+
.apply(highlight_changes, axis=1)
|
647 |
+
.apply(highlight_changes_winners, axis=1)
|
648 |
+
.apply(highlight_changes_losers, axis=1)
|
649 |
+
.background_gradient(axis=0)
|
650 |
+
.background_gradient(cmap='RdYlGn')
|
651 |
+
.format(precision=2),
|
652 |
+
height=1000,
|
653 |
+
use_container_width=True
|
654 |
+
)
|
655 |
+
|
656 |
+
# Option to download optimized lineups
|
657 |
+
if st.button('Prepare Late Swap Export'):
|
658 |
+
export_df = st.session_state['optimized_df'].copy()
|
659 |
+
|
660 |
+
# Map player names to their export IDs for all player columns
|
661 |
+
for col in export_df.columns:
|
662 |
+
if col not in ['salary', 'median', 'Own']:
|
663 |
+
export_df[col] = export_df[col].map(st.session_state['export_dict'])
|
664 |
+
|
665 |
+
csv = export_df.to_csv(index=False)
|
666 |
+
st.download_button(
|
667 |
+
label="Download CSV",
|
668 |
+
data=csv,
|
669 |
+
file_name="optimized_lineups.csv",
|
670 |
+
mime="text/csv"
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
st.write("Current Portfolio")
|
674 |
+
st.dataframe(
|
675 |
+
st.session_state['portfolio'].style
|
676 |
+
.background_gradient(axis=0)
|
677 |
+
.background_gradient(cmap='RdYlGn')
|
678 |
+
.format(precision=2),
|
679 |
+
height=1000,
|
680 |
+
use_container_width=True
|
681 |
+
)
|
682 |
+
|
683 |
+
with tab3:
|
684 |
+
if st.button('Clear data', key='reset3'):
|
685 |
+
st.session_state.clear()
|
686 |
+
if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
|
687 |
+
col1, col2, col3 = st.columns([1, 8, 1])
|
688 |
+
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge']
|
689 |
+
with col1:
|
690 |
+
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
|
691 |
+
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA'])
|
692 |
+
st.info("It currently does not matter what sport you select, it may matter in the future.")
|
693 |
+
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
|
694 |
+
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
|
695 |
+
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
|
696 |
+
if site_var == 'Draftkings':
|
697 |
+
if type_var == 'Classic':
|
698 |
+
map_dict = {
|
699 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
700 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
701 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
702 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
703 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
704 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
705 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
706 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
707 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
708 |
+
}
|
709 |
+
elif type_var == 'Showdown':
|
710 |
+
if sport_var == 'NFL':
|
711 |
+
map_dict = {
|
712 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
713 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
714 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
715 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
716 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
717 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
718 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
|
719 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
720 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
721 |
+
}
|
722 |
+
elif sport_var != 'NFL':
|
723 |
+
map_dict = {
|
724 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
725 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
726 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)),
|
727 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
728 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
729 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
730 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
731 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
732 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
733 |
+
}
|
734 |
+
elif site_var == 'Fanduel':
|
735 |
+
map_dict = {
|
736 |
+
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
737 |
+
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
738 |
+
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
739 |
+
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
740 |
+
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
741 |
+
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
742 |
+
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
743 |
+
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
744 |
+
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
745 |
+
}
|
746 |
+
|
747 |
+
if type_var == 'Classic':
|
748 |
+
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
749 |
+
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
750 |
+
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
751 |
+
if stack_dict is not None:
|
752 |
+
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict)
|
753 |
+
elif type_var == 'Showdown':
|
754 |
+
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
755 |
+
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
|
756 |
+
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) +
|
757 |
+
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
758 |
+
axis=1
|
759 |
+
)
|
760 |
+
|
761 |
+
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
762 |
+
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
|
763 |
+
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) +
|
764 |
+
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
765 |
+
axis=1
|
766 |
+
)
|
767 |
+
|
768 |
+
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
769 |
+
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
|
770 |
+
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) +
|
771 |
+
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
|
772 |
+
axis=1
|
773 |
+
)
|
774 |
+
with col3:
|
775 |
+
with st.form(key='filter_form'):
|
776 |
+
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
|
777 |
+
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
|
778 |
+
max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
|
779 |
+
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
|
780 |
+
player_names = set()
|
781 |
+
for col in st.session_state['portfolio'].columns:
|
782 |
+
if col not in excluded_cols:
|
783 |
+
player_names.update(st.session_state['portfolio'][col].unique())
|
784 |
+
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
|
785 |
+
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
|
786 |
+
if stack_dict is not None:
|
787 |
+
stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
|
788 |
+
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[])
|
789 |
+
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[])
|
790 |
+
|
791 |
+
submitted = st.form_submit_button("Submit")
|
792 |
+
|
793 |
+
with col2:
|
794 |
+
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var)
|
795 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
|
796 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
|
797 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
|
798 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
|
799 |
+
if stack_dict is not None:
|
800 |
+
if stack_toggle == 'All Stacks':
|
801 |
+
st.session_state['portfolio'] = st.session_state['portfolio']
|
802 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
|
803 |
+
else:
|
804 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
|
805 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
|
806 |
+
if player_remove:
|
807 |
+
# Create mask for lineups that contain any of the removed players
|
808 |
+
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
809 |
+
remove_mask = st.session_state['portfolio'][player_columns].apply(
|
810 |
+
lambda row: not any(player in list(row) for player in player_remove), axis=1
|
811 |
+
)
|
812 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
|
813 |
+
|
814 |
+
if player_lock:
|
815 |
+
# Create mask for lineups that contain all locked players
|
816 |
+
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
817 |
+
|
818 |
+
lock_mask = st.session_state['portfolio'][player_columns].apply(
|
819 |
+
lambda row: all(player in list(row) for player in player_lock), axis=1
|
820 |
+
)
|
821 |
+
st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
|
822 |
+
export_file = st.session_state['portfolio'].copy()
|
823 |
+
st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)
|
824 |
+
if csv_file is not None:
|
825 |
+
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
826 |
+
for col in player_columns:
|
827 |
+
export_file[col] = export_file[col].map(st.session_state['export_dict'])
|
828 |
+
with st.expander("Download options"):
|
829 |
+
if stack_dict is not None:
|
830 |
+
with st.form(key='stack_form'):
|
831 |
+
st.subheader("Stack Count Adjustments")
|
832 |
+
st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.")
|
833 |
+
# Create a container for stack value inputs
|
834 |
+
sort_container = st.container()
|
835 |
+
with sort_container:
|
836 |
+
sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own'])
|
837 |
+
|
838 |
+
# Get unique stack values
|
839 |
+
unique_stacks = sorted(list(set(stack_dict.values())))
|
840 |
+
|
841 |
+
# Create a dictionary to store stack multipliers
|
842 |
+
if 'stack_multipliers' not in st.session_state:
|
843 |
+
st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks}
|
844 |
+
|
845 |
+
# Create columns for the stack inputs
|
846 |
+
num_cols = 6 # Number of columns to display
|
847 |
+
for i in range(0, len(unique_stacks), num_cols):
|
848 |
+
cols = st.columns(num_cols)
|
849 |
+
for j, stack in enumerate(unique_stacks[i:i+num_cols]):
|
850 |
+
with cols[j]:
|
851 |
+
# Create a unique key for each number input
|
852 |
+
key = f"stack_count_{stack}"
|
853 |
+
# Get the current count of this stack in the portfolio
|
854 |
+
current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack])
|
855 |
+
# Create number input with current value and max value based on actual count
|
856 |
+
st.session_state.stack_multipliers[stack] = st.number_input(
|
857 |
+
f"{stack} count",
|
858 |
+
min_value=0.0,
|
859 |
+
max_value=float(current_stack_count),
|
860 |
+
value=float(current_stack_count),
|
861 |
+
step=1.0,
|
862 |
+
key=key
|
863 |
+
)
|
864 |
+
|
865 |
+
# Create a copy of the portfolio
|
866 |
+
portfolio_copy = st.session_state['portfolio'].copy()
|
867 |
+
|
868 |
+
# Create a list to store selected rows
|
869 |
+
selected_rows = []
|
870 |
+
|
871 |
+
# For each stack, select the top N rows based on the count value
|
872 |
+
for stack in unique_stacks:
|
873 |
+
if stack in st.session_state.stack_multipliers:
|
874 |
+
count = int(st.session_state.stack_multipliers[stack])
|
875 |
+
# Get rows for this stack
|
876 |
+
stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack]
|
877 |
+
# Sort by median and take top N rows
|
878 |
+
top_rows = stack_rows.nlargest(count, sort_var)
|
879 |
+
selected_rows.append(top_rows)
|
880 |
+
|
881 |
+
# Combine all selected rows
|
882 |
+
portfolio_copy = pd.concat(selected_rows)
|
883 |
+
|
884 |
+
# Update export_file with filtered data
|
885 |
+
export_file = portfolio_copy.copy()
|
886 |
+
|
887 |
+
submitted = st.form_submit_button("Submit")
|
888 |
+
if submitted:
|
889 |
+
st.write('Export portfolio updated!')
|
890 |
+
|
891 |
+
st.download_button(label="Download Portfolio", data=export_file.to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
|
892 |
+
# Display the paginated dataframe first
|
893 |
+
st.dataframe(
|
894 |
+
st.session_state['portfolio'].style
|
895 |
+
.background_gradient(axis=0)
|
896 |
+
.background_gradient(cmap='RdYlGn')
|
897 |
+
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
|
898 |
+
.format(freq_format, precision=2),
|
899 |
+
height=1000,
|
900 |
+
use_container_width=True
|
901 |
+
)
|
902 |
+
|
903 |
+
# Add pagination controls below the dataframe
|
904 |
+
total_rows = len(st.session_state['portfolio'])
|
905 |
+
rows_per_page = 500
|
906 |
+
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
|
907 |
+
|
908 |
+
# Initialize page number in session state if not exists
|
909 |
+
if 'current_page' not in st.session_state:
|
910 |
+
st.session_state.current_page = 1
|
911 |
+
|
912 |
+
# Display current page range info and pagination control in a single line
|
913 |
+
st.write(
|
914 |
+
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
|
915 |
+
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
|
916 |
+
)
|
917 |
+
|
918 |
+
# Add page number input
|
919 |
+
st.session_state.current_page = st.number_input(
|
920 |
+
f"Page (1-{total_pages})",
|
921 |
+
min_value=1,
|
922 |
+
max_value=total_pages,
|
923 |
+
value=st.session_state.current_page
|
924 |
+
)
|
925 |
+
|
926 |
+
# Calculate start and end indices for current page
|
927 |
+
start_idx = (st.session_state.current_page - 1) * rows_per_page
|
928 |
+
end_idx = min(start_idx + rows_per_page, total_rows)
|
929 |
+
|
930 |
+
# Get the subset of data for the current page
|
931 |
+
current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx]
|
932 |
+
|
933 |
+
# Create player summary dataframe
|
934 |
+
player_stats = []
|
935 |
+
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
936 |
+
|
937 |
+
if type_var == 'Showdown':
|
938 |
+
# Handle Captain positions
|
939 |
+
for player in player_names:
|
940 |
+
# Create mask for lineups where this player is Captain (first column)
|
941 |
+
cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
|
942 |
+
|
943 |
+
if cpt_mask.any():
|
944 |
+
player_stats.append({
|
945 |
+
'Player': f"{player} (CPT)",
|
946 |
+
'Lineup Count': cpt_mask.sum(),
|
947 |
+
'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
|
948 |
+
'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
|
949 |
+
'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
|
950 |
+
'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
|
951 |
+
'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
|
952 |
+
})
|
953 |
+
|
954 |
+
# Create mask for lineups where this player is FLEX (other columns)
|
955 |
+
flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
|
956 |
+
lambda row: player in list(row), axis=1
|
957 |
+
)
|
958 |
+
|
959 |
+
if flex_mask.any():
|
960 |
+
player_stats.append({
|
961 |
+
'Player': f"{player} (FLEX)",
|
962 |
+
'Lineup Count': flex_mask.sum(),
|
963 |
+
'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
|
964 |
+
'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
|
965 |
+
'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
|
966 |
+
'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
|
967 |
+
'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
|
968 |
+
})
|
969 |
+
else:
|
970 |
+
# Original Classic format processing
|
971 |
+
for player in player_names:
|
972 |
+
player_mask = st.session_state['portfolio'][player_columns].apply(
|
973 |
+
lambda row: player in list(row), axis=1
|
974 |
+
)
|
975 |
+
|
976 |
+
if player_mask.any():
|
977 |
+
player_stats.append({
|
978 |
+
'Player': player,
|
979 |
+
'Lineup Count': player_mask.sum(),
|
980 |
+
'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(),
|
981 |
+
'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(),
|
982 |
+
'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(),
|
983 |
+
'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(),
|
984 |
+
'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(),
|
985 |
+
})
|
986 |
+
|
987 |
+
player_summary = pd.DataFrame(player_stats)
|
988 |
+
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
|
989 |
+
|
990 |
+
st.subheader("Player Summary")
|
991 |
+
st.dataframe(
|
992 |
+
player_summary.style
|
993 |
+
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
|
994 |
+
.format({
|
995 |
+
'Avg Median': '{:.2f}',
|
996 |
+
'Avg Own': '{:.2f}',
|
997 |
+
'Avg Dupes': '{:.2f}',
|
998 |
+
'Avg Finish %': '{:.2%}',
|
999 |
+
'Avg Lineup Edge': '{:.2%}'
|
1000 |
+
}),
|
1001 |
+
height=400,
|
1002 |
+
use_container_width=True
|
1003 |
+
)
|
app.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: python
|
2 |
+
env: flex
|
3 |
+
|
4 |
+
runtime_config:
|
5 |
+
python_version: 3
|
6 |
+
|
7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
8 |
+
|
9 |
+
automatic_scaling:
|
10 |
+
max_num_instances: 200
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gspread
|
3 |
+
openpyxl
|
4 |
+
matplotlib
|
5 |
+
fuzzywuzzy
|
6 |
+
pulp
|
7 |
+
docker
|
8 |
+
plotly
|
9 |
+
scipy
|
10 |
+
pymongo
|