James McCool commited on
Commit
5abfd03
·
1 Parent(s): abd1ae1

Remove table display of salary and cleaned contest data in app.py and load_contest_file.py for a cleaner user interface. This change streamlines the data presentation by eliminating unnecessary table outputs while maintaining existing functionality.

Browse files
Files changed (2) hide show
  1. app.py +0 -2
  2. global_func/load_contest_file.py +0 -2
app.py CHANGED
@@ -147,8 +147,6 @@ with tab1:
147
  st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
148
  st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
149
  st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
150
-
151
- st.table(st.session_state['salary_dict'])
152
 
153
  with tab2:
154
  excluded_cols = ['BaseName', 'EntryCount']
 
147
  st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
148
  st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
149
  st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
 
 
150
 
151
  with tab2:
152
  excluded_cols = ['BaseName', 'EntryCount']
global_func/load_contest_file.py CHANGED
@@ -128,7 +128,6 @@ def load_contest_file(upload, type, helper = None, sport = None):
128
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
129
  elif sport == 'GOLF':
130
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
131
- st.table(cleaned_df.head(10))
132
  elif type == 'Showdown':
133
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' UTIL ', 'CPT '], value=',', regex=True)
134
  print(type)
@@ -138,7 +137,6 @@ def load_contest_file(upload, type, helper = None, sport = None):
138
  entry_counts = cleaned_df['BaseName'].value_counts()
139
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
140
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']]
141
- st.table(cleaned_df.head(10))
142
 
143
  print('Made it through check_lineups')
144
 
 
128
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
129
  elif sport == 'GOLF':
130
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
 
131
  elif type == 'Showdown':
132
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' UTIL ', 'CPT '], value=',', regex=True)
133
  print(type)
 
137
  entry_counts = cleaned_df['BaseName'].value_counts()
138
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
139
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'CPT', 'UTIL1', 'UTIL2', 'UTIL3', 'UTIL4', 'UTIL5']]
 
140
 
141
  print('Made it through check_lineups')
142