James McCool commited on
Commit
5b2d759
·
1 Parent(s): 55a9933

Add WNBA support for contest file loading

Browse files

- Implemented specific handling for WNBA lineups in the load_contest_file function, allowing for the correct parsing of player positions and lineup structure.
- Updated the DataFrame processing to accommodate WNBA-specific columns, enhancing the application's functionality for users participating in WNBA contests.

Files changed (1) hide show
  1. global_func/load_contest_file.py +6 -0
global_func/load_contest_file.py CHANGED
@@ -113,6 +113,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
113
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
114
  elif sport == 'GOLF':
115
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
 
 
116
  print(sport)
117
  check_lineups = cleaned_df.copy()
118
  if sport == 'MLB':
@@ -121,6 +123,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
121
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
122
  elif sport == 'GOLF':
123
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
 
 
124
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
125
  entry_counts = cleaned_df['BaseName'].value_counts()
126
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
@@ -130,6 +134,8 @@ def load_contest_file(upload, type, helper = None, sport = None):
130
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
131
  elif sport == 'GOLF':
132
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
 
 
133
  elif type == 'Showdown':
134
  if sport == 'NHL':
135
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)
 
113
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' F ', 'F '], value=',', regex=True)
114
  elif sport == 'GOLF':
115
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' P ', ' C ', '1B ', ' 2B ', ' 3B ', ' SS ', ' OF ', ' G ', 'G '], value=',', regex=True)
116
+ elif sport == 'WNBA':
117
+ cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' F ', ' UTIL ', 'G '], value=',', regex=True)
118
  print(sport)
119
  check_lineups = cleaned_df.copy()
120
  if sport == 'MLB':
 
123
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
124
  elif sport == 'GOLF':
125
  cleaned_df[['Remove', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']] = cleaned_df['Lineup'].str.split(',', expand=True)
126
+ elif sport == 'WNBA':
127
+ cleaned_df[['Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']] = cleaned_df['Lineup'].str.split(',', expand=True)
128
  cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
129
  entry_counts = cleaned_df['BaseName'].value_counts()
130
  cleaned_df['EntryCount'] = cleaned_df['BaseName'].map(entry_counts)
 
134
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
135
  elif sport == 'GOLF':
136
  cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guy', 'Dude', 'Pooba', 'Bub', 'Chief', 'Buddy']]
137
+ elif sport == 'WNBA':
138
+ cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'Guard1', 'Guard2', 'Forward1', 'Forward2', 'Forward3', 'UTIL']]
139
  elif type == 'Showdown':
140
  if sport == 'NHL':
141
  cleaned_df['Lineup'] = cleaned_df['Lineup'].replace([' FLEX ', 'CPT '], value=',', regex=True)