James McCool
commited on
Commit
·
5db8a23
1
Parent(s):
d04558f
Refactor file upload functionality in `app.py` and `load_file.py`
Browse files- Replaced portfolio file upload with contest file upload in `app.py`, streamlining the interface for users.
- Updated `load_file.py` to process contest files, extracting relevant player data and ownership information.
- Enhanced data handling by renaming columns and ensuring proper formatting for player positions and ownership percentages.
- app.py +43 -398
- global_func/load_file.py +10 -8
app.py
CHANGED
|
@@ -16,10 +16,6 @@ from global_func.highlight_rows import highlight_changes, highlight_changes_winn
|
|
| 16 |
from global_func.load_csv import load_csv
|
| 17 |
from global_func.find_csv_mismatches import find_csv_mismatches
|
| 18 |
|
| 19 |
-
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
| 20 |
-
player_wrong_names_mlb = ['Enrique Hernandez']
|
| 21 |
-
player_right_names_mlb = ['Kike Hernandez']
|
| 22 |
-
|
| 23 |
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
|
| 24 |
with tab1:
|
| 25 |
if st.button('Clear data', key='reset1'):
|
|
@@ -58,51 +54,19 @@ with tab1:
|
|
| 58 |
st.dataframe(st.session_state['csv_file'].head(10))
|
| 59 |
|
| 60 |
with col2:
|
| 61 |
-
st.subheader("
|
| 62 |
-
st.info("Go ahead and upload a
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
| 75 |
-
if 'portfolio' in st.session_state:
|
| 76 |
-
del st.session_state['portfolio']
|
| 77 |
-
if 'export_portfolio' in st.session_state:
|
| 78 |
-
del st.session_state['export_portfolio']
|
| 79 |
-
|
| 80 |
-
if portfolio_file:
|
| 81 |
-
if saber_toggle == 'Yes':
|
| 82 |
-
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'])
|
| 83 |
-
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
|
| 84 |
-
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
|
| 85 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
|
| 86 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
|
| 87 |
-
else:
|
| 88 |
-
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file)
|
| 89 |
-
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
|
| 90 |
-
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
|
| 91 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
|
| 92 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
|
| 93 |
-
# Check if Stack column exists in the portfolio
|
| 94 |
-
if 'Stack' in st.session_state['portfolio'].columns:
|
| 95 |
-
# Create dictionary mapping index to Stack values
|
| 96 |
-
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
|
| 97 |
-
st.write(f"Found {len(stack_dict)} stack assignments")
|
| 98 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
|
| 99 |
-
else:
|
| 100 |
-
stack_dict = None
|
| 101 |
-
st.info("No Stack column found in portfolio")
|
| 102 |
-
if st.session_state['portfolio'] is not None:
|
| 103 |
-
st.success('Portfolio file loaded successfully!')
|
| 104 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
| 105 |
-
st.dataframe(st.session_state['portfolio'].head(10))
|
| 106 |
|
| 107 |
with col3:
|
| 108 |
st.subheader("Projections File")
|
|
@@ -131,361 +95,42 @@ with tab1:
|
|
| 131 |
export_projections, projections = load_file(projections_file)
|
| 132 |
if projections is not None:
|
| 133 |
st.success('Projections file loaded successfully!')
|
| 134 |
-
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
|
| 135 |
st.dataframe(projections.head(10))
|
| 136 |
|
| 137 |
-
if
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
|
| 171 |
with tab2:
|
| 172 |
if st.button('Clear data', key='reset3'):
|
| 173 |
st.session_state.clear()
|
| 174 |
-
if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
|
| 175 |
-
col1, col2, col3 = st.columns([1, 8, 1])
|
| 176 |
-
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Win%', 'Lineup Edge']
|
| 177 |
-
with col1:
|
| 178 |
-
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
|
| 179 |
-
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'MMA'])
|
| 180 |
-
st.info("It currently does not matter what sport you select, it may matter in the future.")
|
| 181 |
-
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
|
| 182 |
-
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
|
| 183 |
-
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
|
| 184 |
-
if site_var == 'Draftkings':
|
| 185 |
-
if type_var == 'Classic':
|
| 186 |
-
map_dict = {
|
| 187 |
-
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 188 |
-
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 189 |
-
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 190 |
-
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
| 191 |
-
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
| 192 |
-
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
| 193 |
-
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 194 |
-
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
| 195 |
-
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 196 |
-
}
|
| 197 |
-
elif type_var == 'Showdown':
|
| 198 |
-
if sport_var == 'NFL':
|
| 199 |
-
map_dict = {
|
| 200 |
-
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 201 |
-
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 202 |
-
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 203 |
-
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
| 204 |
-
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
| 205 |
-
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
| 206 |
-
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
|
| 207 |
-
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
| 208 |
-
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 209 |
-
}
|
| 210 |
-
elif sport_var != 'NFL':
|
| 211 |
-
map_dict = {
|
| 212 |
-
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 213 |
-
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 214 |
-
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] / 1.5)),
|
| 215 |
-
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
| 216 |
-
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
| 217 |
-
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
| 218 |
-
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 219 |
-
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
| 220 |
-
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 221 |
-
}
|
| 222 |
-
elif site_var == 'Fanduel':
|
| 223 |
-
map_dict = {
|
| 224 |
-
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 225 |
-
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 226 |
-
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 227 |
-
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
|
| 228 |
-
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
|
| 229 |
-
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
|
| 230 |
-
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
| 231 |
-
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
|
| 232 |
-
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 233 |
-
}
|
| 234 |
-
|
| 235 |
-
if type_var == 'Classic':
|
| 236 |
-
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
| 237 |
-
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
| 238 |
-
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
| 239 |
-
if stack_dict is not None:
|
| 240 |
-
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].index.map(stack_dict)
|
| 241 |
-
elif type_var == 'Showdown':
|
| 242 |
-
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
| 243 |
-
st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
|
| 244 |
-
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) +
|
| 245 |
-
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
| 246 |
-
axis=1
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
| 250 |
-
st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
|
| 251 |
-
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) +
|
| 252 |
-
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
| 253 |
-
axis=1
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
| 257 |
-
st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
|
| 258 |
-
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) +
|
| 259 |
-
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
|
| 260 |
-
axis=1
|
| 261 |
-
)
|
| 262 |
-
with col3:
|
| 263 |
-
with st.form(key='filter_form'):
|
| 264 |
-
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, step=1)
|
| 265 |
-
min_salary = st.number_input("Min acceptable salary?", value=1000, min_value=1000, step=100)
|
| 266 |
-
max_salary = st.number_input("Max acceptable salary?", value=60000, min_value=1000, step=100)
|
| 267 |
-
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=.50, min_value=0.005, step=.001)
|
| 268 |
-
player_names = set()
|
| 269 |
-
for col in st.session_state['portfolio'].columns:
|
| 270 |
-
if col not in excluded_cols:
|
| 271 |
-
player_names.update(st.session_state['portfolio'][col].unique())
|
| 272 |
-
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
|
| 273 |
-
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
|
| 274 |
-
if stack_dict is not None:
|
| 275 |
-
stack_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
|
| 276 |
-
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(stack_dict.values()))), default=[])
|
| 277 |
-
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(stack_dict.values()))), default=[])
|
| 278 |
-
|
| 279 |
-
submitted = st.form_submit_button("Submit")
|
| 280 |
-
|
| 281 |
-
with col2:
|
| 282 |
-
st.session_state['portfolio'] = predict_dupes(st.session_state['portfolio'], map_dict, site_var, type_var, Contest_Size, strength_var)
|
| 283 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Dupes'] <= max_dupes]
|
| 284 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] >= min_salary]
|
| 285 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['salary'] <= max_salary]
|
| 286 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Finish_percentile'] <= max_finish_percentile]
|
| 287 |
-
if stack_dict is not None:
|
| 288 |
-
if stack_toggle == 'All Stacks':
|
| 289 |
-
st.session_state['portfolio'] = st.session_state['portfolio']
|
| 290 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
|
| 291 |
-
else:
|
| 292 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][st.session_state['portfolio']['Stack'].isin(stack_selections)]
|
| 293 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][~st.session_state['portfolio']['Stack'].isin(stack_remove)]
|
| 294 |
-
if player_remove:
|
| 295 |
-
# Create mask for lineups that contain any of the removed players
|
| 296 |
-
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
| 297 |
-
remove_mask = st.session_state['portfolio'][player_columns].apply(
|
| 298 |
-
lambda row: not any(player in list(row) for player in player_remove), axis=1
|
| 299 |
-
)
|
| 300 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][remove_mask]
|
| 301 |
-
|
| 302 |
-
if player_lock:
|
| 303 |
-
# Create mask for lineups that contain all locked players
|
| 304 |
-
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
| 305 |
-
|
| 306 |
-
lock_mask = st.session_state['portfolio'][player_columns].apply(
|
| 307 |
-
lambda row: all(player in list(row) for player in player_lock), axis=1
|
| 308 |
-
)
|
| 309 |
-
st.session_state['portfolio'] = st.session_state['portfolio'][lock_mask]
|
| 310 |
-
export_file = st.session_state['portfolio'].copy()
|
| 311 |
-
st.session_state['portfolio'] = st.session_state['portfolio'].sort_values(by='median', ascending=False)
|
| 312 |
-
if csv_file is not None:
|
| 313 |
-
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
| 314 |
-
for col in player_columns:
|
| 315 |
-
export_file[col] = export_file[col].map(st.session_state['export_dict'])
|
| 316 |
-
with st.expander("Download options"):
|
| 317 |
-
if stack_dict is not None:
|
| 318 |
-
with st.form(key='stack_form'):
|
| 319 |
-
st.subheader("Stack Count Adjustments")
|
| 320 |
-
st.info("This allows you to fine tune the stacks that you wish to export. If you want to make sure you don't export any of a specific stack you can 0 it out.")
|
| 321 |
-
# Create a container for stack value inputs
|
| 322 |
-
sort_container = st.container()
|
| 323 |
-
with sort_container:
|
| 324 |
-
sort_var = st.selectbox("Sort export portfolio by:", options=['median', 'Lineup Edge', 'Own'])
|
| 325 |
-
|
| 326 |
-
# Get unique stack values
|
| 327 |
-
unique_stacks = sorted(list(set(stack_dict.values())))
|
| 328 |
-
|
| 329 |
-
# Create a dictionary to store stack multipliers
|
| 330 |
-
if 'stack_multipliers' not in st.session_state:
|
| 331 |
-
st.session_state.stack_multipliers = {stack: 0.0 for stack in unique_stacks}
|
| 332 |
-
|
| 333 |
-
# Create columns for the stack inputs
|
| 334 |
-
num_cols = 6 # Number of columns to display
|
| 335 |
-
for i in range(0, len(unique_stacks), num_cols):
|
| 336 |
-
cols = st.columns(num_cols)
|
| 337 |
-
for j, stack in enumerate(unique_stacks[i:i+num_cols]):
|
| 338 |
-
with cols[j]:
|
| 339 |
-
# Create a unique key for each number input
|
| 340 |
-
key = f"stack_count_{stack}"
|
| 341 |
-
# Get the current count of this stack in the portfolio
|
| 342 |
-
current_stack_count = len(st.session_state['portfolio'][st.session_state['portfolio']['Stack'] == stack])
|
| 343 |
-
# Create number input with current value and max value based on actual count
|
| 344 |
-
st.session_state.stack_multipliers[stack] = st.number_input(
|
| 345 |
-
f"{stack} count",
|
| 346 |
-
min_value=0.0,
|
| 347 |
-
max_value=float(current_stack_count),
|
| 348 |
-
value=float(current_stack_count),
|
| 349 |
-
step=1.0,
|
| 350 |
-
key=key
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
# Create a copy of the portfolio
|
| 354 |
-
portfolio_copy = st.session_state['portfolio'].copy()
|
| 355 |
-
|
| 356 |
-
# Create a list to store selected rows
|
| 357 |
-
selected_rows = []
|
| 358 |
-
|
| 359 |
-
# For each stack, select the top N rows based on the count value
|
| 360 |
-
for stack in unique_stacks:
|
| 361 |
-
if stack in st.session_state.stack_multipliers:
|
| 362 |
-
count = int(st.session_state.stack_multipliers[stack])
|
| 363 |
-
# Get rows for this stack
|
| 364 |
-
stack_rows = portfolio_copy[portfolio_copy['Stack'] == stack]
|
| 365 |
-
# Sort by median and take top N rows
|
| 366 |
-
top_rows = stack_rows.nlargest(count, sort_var)
|
| 367 |
-
selected_rows.append(top_rows)
|
| 368 |
-
|
| 369 |
-
# Combine all selected rows
|
| 370 |
-
portfolio_copy = pd.concat(selected_rows)
|
| 371 |
-
|
| 372 |
-
# Update export_file with filtered data
|
| 373 |
-
export_file = portfolio_copy.copy()
|
| 374 |
-
|
| 375 |
-
submitted = st.form_submit_button("Submit")
|
| 376 |
-
if submitted:
|
| 377 |
-
st.write('Export portfolio updated!')
|
| 378 |
-
|
| 379 |
-
st.download_button(label="Download Portfolio", data=export_file.to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
|
| 380 |
-
# Display the paginated dataframe first
|
| 381 |
-
st.dataframe(
|
| 382 |
-
st.session_state['portfolio'].style
|
| 383 |
-
.background_gradient(axis=0)
|
| 384 |
-
.background_gradient(cmap='RdYlGn')
|
| 385 |
-
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
|
| 386 |
-
.format(freq_format, precision=2),
|
| 387 |
-
height=1000,
|
| 388 |
-
use_container_width=True
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
# Add pagination controls below the dataframe
|
| 392 |
-
total_rows = len(st.session_state['portfolio'])
|
| 393 |
-
rows_per_page = 500
|
| 394 |
-
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
|
| 395 |
-
|
| 396 |
-
# Initialize page number in session state if not exists
|
| 397 |
-
if 'current_page' not in st.session_state:
|
| 398 |
-
st.session_state.current_page = 1
|
| 399 |
-
|
| 400 |
-
# Display current page range info and pagination control in a single line
|
| 401 |
-
st.write(
|
| 402 |
-
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
|
| 403 |
-
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
# Add page number input
|
| 407 |
-
st.session_state.current_page = st.number_input(
|
| 408 |
-
f"Page (1-{total_pages})",
|
| 409 |
-
min_value=1,
|
| 410 |
-
max_value=total_pages,
|
| 411 |
-
value=st.session_state.current_page
|
| 412 |
-
)
|
| 413 |
-
|
| 414 |
-
# Calculate start and end indices for current page
|
| 415 |
-
start_idx = (st.session_state.current_page - 1) * rows_per_page
|
| 416 |
-
end_idx = min(start_idx + rows_per_page, total_rows)
|
| 417 |
-
|
| 418 |
-
# Get the subset of data for the current page
|
| 419 |
-
current_page_data = st.session_state['portfolio'].iloc[start_idx:end_idx]
|
| 420 |
-
|
| 421 |
-
# Create player summary dataframe
|
| 422 |
-
player_stats = []
|
| 423 |
-
player_columns = [col for col in st.session_state['portfolio'].columns if col not in excluded_cols]
|
| 424 |
-
|
| 425 |
-
if type_var == 'Showdown':
|
| 426 |
-
# Handle Captain positions
|
| 427 |
-
for player in player_names:
|
| 428 |
-
# Create mask for lineups where this player is Captain (first column)
|
| 429 |
-
cpt_mask = st.session_state['portfolio'][player_columns[0]] == player
|
| 430 |
-
|
| 431 |
-
if cpt_mask.any():
|
| 432 |
-
player_stats.append({
|
| 433 |
-
'Player': f"{player} (CPT)",
|
| 434 |
-
'Lineup Count': cpt_mask.sum(),
|
| 435 |
-
'Avg Median': st.session_state['portfolio'][cpt_mask]['median'].mean(),
|
| 436 |
-
'Avg Own': st.session_state['portfolio'][cpt_mask]['Own'].mean(),
|
| 437 |
-
'Avg Dupes': st.session_state['portfolio'][cpt_mask]['Dupes'].mean(),
|
| 438 |
-
'Avg Finish %': st.session_state['portfolio'][cpt_mask]['Finish_percentile'].mean(),
|
| 439 |
-
'Avg Lineup Edge': st.session_state['portfolio'][cpt_mask]['Lineup Edge'].mean(),
|
| 440 |
-
})
|
| 441 |
-
|
| 442 |
-
# Create mask for lineups where this player is FLEX (other columns)
|
| 443 |
-
flex_mask = st.session_state['portfolio'][player_columns[1:]].apply(
|
| 444 |
-
lambda row: player in list(row), axis=1
|
| 445 |
-
)
|
| 446 |
-
|
| 447 |
-
if flex_mask.any():
|
| 448 |
-
player_stats.append({
|
| 449 |
-
'Player': f"{player} (FLEX)",
|
| 450 |
-
'Lineup Count': flex_mask.sum(),
|
| 451 |
-
'Avg Median': st.session_state['portfolio'][flex_mask]['median'].mean(),
|
| 452 |
-
'Avg Own': st.session_state['portfolio'][flex_mask]['Own'].mean(),
|
| 453 |
-
'Avg Dupes': st.session_state['portfolio'][flex_mask]['Dupes'].mean(),
|
| 454 |
-
'Avg Finish %': st.session_state['portfolio'][flex_mask]['Finish_percentile'].mean(),
|
| 455 |
-
'Avg Lineup Edge': st.session_state['portfolio'][flex_mask]['Lineup Edge'].mean(),
|
| 456 |
-
})
|
| 457 |
-
else:
|
| 458 |
-
# Original Classic format processing
|
| 459 |
-
for player in player_names:
|
| 460 |
-
player_mask = st.session_state['portfolio'][player_columns].apply(
|
| 461 |
-
lambda row: player in list(row), axis=1
|
| 462 |
-
)
|
| 463 |
-
|
| 464 |
-
if player_mask.any():
|
| 465 |
-
player_stats.append({
|
| 466 |
-
'Player': player,
|
| 467 |
-
'Lineup Count': player_mask.sum(),
|
| 468 |
-
'Avg Median': st.session_state['portfolio'][player_mask]['median'].mean(),
|
| 469 |
-
'Avg Own': st.session_state['portfolio'][player_mask]['Own'].mean(),
|
| 470 |
-
'Avg Dupes': st.session_state['portfolio'][player_mask]['Dupes'].mean(),
|
| 471 |
-
'Avg Finish %': st.session_state['portfolio'][player_mask]['Finish_percentile'].mean(),
|
| 472 |
-
'Avg Lineup Edge': st.session_state['portfolio'][player_mask]['Lineup Edge'].mean(),
|
| 473 |
-
})
|
| 474 |
-
|
| 475 |
-
player_summary = pd.DataFrame(player_stats)
|
| 476 |
-
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
|
| 477 |
-
|
| 478 |
-
st.subheader("Player Summary")
|
| 479 |
-
st.dataframe(
|
| 480 |
-
player_summary.style
|
| 481 |
-
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
|
| 482 |
-
.format({
|
| 483 |
-
'Avg Median': '{:.2f}',
|
| 484 |
-
'Avg Own': '{:.2f}',
|
| 485 |
-
'Avg Dupes': '{:.2f}',
|
| 486 |
-
'Avg Finish %': '{:.2%}',
|
| 487 |
-
'Avg Lineup Edge': '{:.2%}'
|
| 488 |
-
}),
|
| 489 |
-
height=400,
|
| 490 |
-
use_container_width=True
|
| 491 |
-
)
|
|
|
|
| 16 |
from global_func.load_csv import load_csv
|
| 17 |
from global_func.find_csv_mismatches import find_csv_mismatches
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
|
| 20 |
with tab1:
|
| 21 |
if st.button('Clear data', key='reset1'):
|
|
|
|
| 54 |
st.dataframe(st.session_state['csv_file'].head(10))
|
| 55 |
|
| 56 |
with col2:
|
| 57 |
+
st.subheader("Contest File")
|
| 58 |
+
st.info("Go ahead and upload a Contest file here. Only include player columns and an optional 'Stack' column if you are playing MLB.")
|
| 59 |
+
Contest_file = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
|
| 60 |
+
if 'Contest' in st.session_state:
|
| 61 |
+
del st.session_state['Contest']
|
| 62 |
+
|
| 63 |
+
if Contest_file:
|
| 64 |
+
st.session_state['Contest'], st.session_state['position_dict'], st.session_state['ownership_dict'] = load_file(Contest_file)
|
| 65 |
+
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
|
| 66 |
+
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
|
| 67 |
+
if st.session_state['Contest'] is not None:
|
| 68 |
+
st.success('Contest file loaded successfully!')
|
| 69 |
+
st.dataframe(st.session_state['Contest'].head(10))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
with col3:
|
| 72 |
st.subheader("Projections File")
|
|
|
|
| 95 |
export_projections, projections = load_file(projections_file)
|
| 96 |
if projections is not None:
|
| 97 |
st.success('Projections file loaded successfully!')
|
|
|
|
| 98 |
st.dataframe(projections.head(10))
|
| 99 |
|
| 100 |
+
# if Contest_file and projections_file:
|
| 101 |
+
# if st.session_state['Contest'] is not None and projections is not None:
|
| 102 |
+
# st.subheader("Name Matching Analysis")
|
| 103 |
+
# # Initialize projections_df in session state if it doesn't exist
|
| 104 |
+
# if 'projections_df' not in st.session_state:
|
| 105 |
+
# st.session_state['projections_df'] = projections.copy()
|
| 106 |
+
# st.session_state['projections_df']['salary'] = (st.session_state['projections_df']['salary'].astype(str).str.replace(',', '').astype(float).astype(int))
|
| 107 |
|
| 108 |
+
# # Update projections_df with any new matches
|
| 109 |
+
# st.session_state['projections_df'] = find_name_mismatches(st.session_state['Contest'], st.session_state['projections_df'])
|
| 110 |
+
# if csv_file is not None and 'export_dict' not in st.session_state:
|
| 111 |
+
# # Create a dictionary of Name to Name+ID from csv_file
|
| 112 |
+
# try:
|
| 113 |
+
# name_id_map = dict(zip(
|
| 114 |
+
# st.session_state['csv_file']['Name'],
|
| 115 |
+
# st.session_state['csv_file']['Name + ID']
|
| 116 |
+
# ))
|
| 117 |
+
# except:
|
| 118 |
+
# name_id_map = dict(zip(
|
| 119 |
+
# st.session_state['csv_file']['Nickname'],
|
| 120 |
+
# st.session_state['csv_file']['Id']
|
| 121 |
+
# ))
|
| 122 |
|
| 123 |
+
# # Function to find best match
|
| 124 |
+
# def find_best_match(name):
|
| 125 |
+
# best_match = process.extractOne(name, name_id_map.keys())
|
| 126 |
+
# if best_match and best_match[1] >= 85: # 85% match threshold
|
| 127 |
+
# return name_id_map[best_match[0]]
|
| 128 |
+
# return name # Return original name if no good match found
|
| 129 |
|
| 130 |
+
# # Apply the matching
|
| 131 |
+
# projections['upload_match'] = projections['player_names'].apply(find_best_match)
|
| 132 |
+
# st.session_state['export_dict'] = dict(zip(projections['player_names'], projections['upload_match']))
|
| 133 |
|
| 134 |
with tab2:
|
| 135 |
if st.button('Clear data', key='reset3'):
|
| 136 |
st.session_state.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_func/load_file.py
CHANGED
|
@@ -8,23 +8,25 @@ from fuzzywuzzy import process
|
|
| 8 |
from global_func.clean_player_name import clean_player_name
|
| 9 |
|
| 10 |
def load_file(upload):
|
|
|
|
| 11 |
if upload is not None:
|
| 12 |
try:
|
| 13 |
if upload.name.endswith('.csv'):
|
| 14 |
-
|
| 15 |
elif upload.name.endswith(('.xls', '.xlsx')):
|
| 16 |
-
|
| 17 |
else:
|
| 18 |
st.error('Please upload either a CSV or Excel file')
|
| 19 |
return None
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
if df[col].dtype == 'object':
|
| 25 |
-
df[col] = df[col].apply(lambda x: clean_player_name(x) if isinstance(x, str) else x)
|
| 26 |
-
|
| 27 |
-
return export_df, df
|
| 28 |
except Exception as e:
|
| 29 |
st.error(f'Error loading file: {str(e)}')
|
| 30 |
return None
|
|
|
|
| 8 |
from global_func.clean_player_name import clean_player_name
|
| 9 |
|
| 10 |
def load_file(upload):
|
| 11 |
+
pos_values = ['P', 'C', '1B', '2B', '3B', 'SS', 'OF']
|
| 12 |
if upload is not None:
|
| 13 |
try:
|
| 14 |
if upload.name.endswith('.csv'):
|
| 15 |
+
raw_df = pd.read_csv(upload)
|
| 16 |
elif upload.name.endswith(('.xls', '.xlsx')):
|
| 17 |
+
raw_df = pd.read_excel(upload)
|
| 18 |
else:
|
| 19 |
st.error('Please upload either a CSV or Excel file')
|
| 20 |
return None
|
| 21 |
|
| 22 |
+
df = raw_df[['EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS']]
|
| 23 |
+
df = df.rename(columns={'Roster Position': 'Pos', '%Drafted': 'Own'})
|
| 24 |
+
df['Lineup'] = df['Lineup'].replace(pos_values, ',')
|
| 25 |
+
df['Lineup'] = df['Lineup'].str.split(',')
|
| 26 |
+
position_dict = dict(zip(df['Player'], df['Pos']))
|
| 27 |
+
ownership_dict = dict(zip(df['Player'], df['Own']))
|
| 28 |
|
| 29 |
+
return df, position_dict, ownership_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
except Exception as e:
|
| 31 |
st.error(f'Error loading file: {str(e)}')
|
| 32 |
return None
|