Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
5f9c332
1
Parent(s):
3502a68
Refactor player data calculations in app.py for improved clarity and efficiency
Browse files- Updated the logic for calculating player usage by creating copies of the working dataframe for contest players and using nlargest for percentage-based player selection.
- Enhanced the player counts calculation to flatten the player columns, ensuring accurate representation of player usage in the display.
- Streamlined the code for better readability and maintainability, contributing to overall application performance.
app.py
CHANGED
@@ -184,15 +184,15 @@ with tab2:
|
|
184 |
players_10per = set()
|
185 |
players_20per = set()
|
186 |
for col in player_columns:
|
187 |
-
contest_players
|
188 |
-
players_1per
|
189 |
-
players_5per
|
190 |
-
players_10per
|
191 |
-
players_20per
|
192 |
with st.container():
|
193 |
tab1, tab2 = st.tabs(['Player Used Info', 'Stack Used Info'])
|
194 |
with tab1:
|
195 |
-
player_counts = pd.Series(list(contest_players)).value_counts()
|
196 |
st.write(player_counts)
|
197 |
player_frame = player_counts.to_frame().reset_index().rename(columns={'index': 'Player', 0: 'Count'})
|
198 |
player_frame['Percent'] = player_frame['Count'] / len(working_df)
|
|
|
184 |
players_10per = set()
|
185 |
players_20per = set()
|
186 |
for col in player_columns:
|
187 |
+
contest_players = working_df.copy()
|
188 |
+
players_1per = working_df.nlargest(n=int(len(working_df) * 0.01), columns='actual')
|
189 |
+
players_5per = working_df.nlargest(n=int(len(working_df) * 0.05), columns='actual')
|
190 |
+
players_10per = working_df.nlargest(n=int(len(working_df) * 0.10), columns='actual')
|
191 |
+
players_20per = working_df.nlargest(n=int(len(working_df) * 0.20), columns='actual')
|
192 |
with st.container():
|
193 |
tab1, tab2 = st.tabs(['Player Used Info', 'Stack Used Info'])
|
194 |
with tab1:
|
195 |
+
player_counts = pd.Series(list(contest_players[player_columns].values.flatten())).value_counts()
|
196 |
st.write(player_counts)
|
197 |
player_frame = player_counts.to_frame().reset_index().rename(columns={'index': 'Player', 0: 'Count'})
|
198 |
player_frame['Percent'] = player_frame['Count'] / len(working_df)
|