James McCool
commited on
Commit
·
88f31b2
1
Parent(s):
f55422b
Enhance load_contest_file function to return cleaned lineups
Browse files- Updated the load_contest_file function to return a new variable, check_lineups, containing a copy of the cleaned lineup data for further processing in app.py.
- Integrated check_lineups into app.py to display the cleaned lineups in a table, improving data visibility and user experience.
- These changes continue the effort to refine data handling and enhance the overall functionality of the application.
- app.py +2 -1
- global_func/load_contest_file.py +2 -2
app.py
CHANGED
@@ -85,7 +85,7 @@ with tab1:
|
|
85 |
del st.session_state['Contest']
|
86 |
|
87 |
if 'Contest_file' in st.session_state and 'Adj_Contest' not in st.session_state:
|
88 |
-
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['pos_df'], st.session_state['entry_list'] = load_contest_file(st.session_state['Contest_file'], sport_select)
|
89 |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
|
90 |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
|
91 |
if st.session_state['Contest'] is not None:
|
@@ -98,6 +98,7 @@ with tab1:
|
|
98 |
st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
|
99 |
st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
|
100 |
st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
|
|
|
101 |
|
102 |
with tab2:
|
103 |
excluded_cols = ['BaseName', 'EntryCount']
|
|
|
85 |
del st.session_state['Contest']
|
86 |
|
87 |
if 'Contest_file' in st.session_state and 'Adj_Contest' not in st.session_state:
|
88 |
+
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['salary_df'], st.session_state['team_df'], st.session_state['pos_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], sport_select)
|
89 |
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
|
90 |
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
|
91 |
if st.session_state['Contest'] is not None:
|
|
|
98 |
st.session_state['salary_dict'] = dict(zip(st.session_state['salary_df']['Player'], st.session_state['salary_df']['Salary']))
|
99 |
st.session_state['team_dict'] = dict(zip(st.session_state['team_df']['Player'], st.session_state['team_df']['Team']))
|
100 |
st.session_state['pos_dict'] = dict(zip(st.session_state['pos_df']['Player'], st.session_state['pos_df']['Pos']))
|
101 |
+
st.table(check_lineups)
|
102 |
|
103 |
with tab2:
|
104 |
excluded_cols = ['BaseName', 'EntryCount']
|
global_func/load_contest_file.py
CHANGED
@@ -42,7 +42,7 @@ def load_contest_file(upload, sport):
|
|
42 |
# Create the cleaned dataframe with just the essential columns
|
43 |
cleaned_df = df[['BaseName', 'EntryCount', 'Lineup']]
|
44 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace(pos_list, value=',', regex=True)
|
45 |
-
|
46 |
cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
47 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
48 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
@@ -51,7 +51,7 @@ def load_contest_file(upload, sport):
|
|
51 |
entry_list = list(set(df['BaseName']))
|
52 |
entry_list.sort()
|
53 |
|
54 |
-
return cleaned_df, ownership_df, fpts_df, salary_df, team_df, pos_df, entry_list
|
55 |
|
56 |
except Exception as e:
|
57 |
st.error(f'Error loading file: {str(e)}')
|
|
|
42 |
# Create the cleaned dataframe with just the essential columns
|
43 |
cleaned_df = df[['BaseName', 'EntryCount', 'Lineup']]
|
44 |
cleaned_df['Lineup'] = cleaned_df['Lineup'].replace(pos_list, value=',', regex=True)
|
45 |
+
check_lineups = cleaned_df.copy()
|
46 |
cleaned_df[['Remove', '1B', '2B', '3B', 'C', 'OF1', 'OF2', 'OF3', 'P1', 'P2', 'SS']] = cleaned_df['Lineup'].str.split(',', expand=True)
|
47 |
cleaned_df = cleaned_df.drop(columns=['Lineup', 'Remove'])
|
48 |
cleaned_df = cleaned_df[['BaseName', 'EntryCount', 'P1', 'P2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']]
|
|
|
51 |
entry_list = list(set(df['BaseName']))
|
52 |
entry_list.sort()
|
53 |
|
54 |
+
return cleaned_df, ownership_df, fpts_df, salary_df, team_df, pos_df, entry_list, check_lineups
|
55 |
|
56 |
except Exception as e:
|
57 |
st.error(f'Error loading file: {str(e)}')
|