James McCool
commited on
Commit
·
89f3a60
1
Parent(s):
0d01fa6
Refactor pagination and data display in app.py
Browse files- Improved the pagination logic by ensuring consistent handling of session state for current page navigation.
- Streamlined the creation of pagination controls and data display, enhancing user interaction and clarity.
- Maintained functionality for displaying player and stack information across multiple tabs, ensuring a cohesive user experience.
app.py
CHANGED
@@ -191,127 +191,127 @@ with tab2:
|
|
191 |
elif entry_parse_var == 'All':
|
192 |
st.session_state['calc_toggle'] = True
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
if 'player_frame' in st.session_state:
|
212 |
-
del st.session_state['player_frame']
|
213 |
-
if 'stack_frame' in st.session_state:
|
214 |
-
del st.session_state['stack_frame']
|
215 |
-
|
216 |
-
with pagination_cols[3]:
|
217 |
-
if st.button(f"Next Page"):
|
218 |
-
st.session_state.current_page += 1
|
219 |
if 'player_frame' in st.session_state:
|
220 |
del st.session_state['player_frame']
|
221 |
if 'stack_frame' in st.session_state:
|
222 |
del st.session_state['stack_frame']
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
.
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
191 |
elif entry_parse_var == 'All':
|
192 |
st.session_state['calc_toggle'] = True
|
193 |
|
194 |
+
# Initialize pagination in session state if not exists
|
195 |
+
if 'current_page' not in st.session_state:
|
196 |
+
st.session_state.current_page = 1
|
197 |
|
198 |
+
# Calculate total pages
|
199 |
+
rows_per_page = 500
|
200 |
+
total_rows = len(working_df)
|
201 |
+
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
|
202 |
|
203 |
+
# Create pagination controls in a single row
|
204 |
+
pagination_cols = st.columns([4, 1, 1, 1, 4])
|
205 |
+
with pagination_cols[1]:
|
206 |
+
if st.button(f"Previous Page"):
|
207 |
+
if st.session_state['current_page'] > 1:
|
208 |
+
st.session_state.current_page -= 1
|
209 |
+
else:
|
210 |
+
st.session_state.current_page = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
if 'player_frame' in st.session_state:
|
212 |
del st.session_state['player_frame']
|
213 |
if 'stack_frame' in st.session_state:
|
214 |
del st.session_state['stack_frame']
|
215 |
|
216 |
+
with pagination_cols[3]:
|
217 |
+
if st.button(f"Next Page"):
|
218 |
+
st.session_state.current_page += 1
|
219 |
+
if 'player_frame' in st.session_state:
|
220 |
+
del st.session_state['player_frame']
|
221 |
+
if 'stack_frame' in st.session_state:
|
222 |
+
del st.session_state['stack_frame']
|
223 |
+
|
224 |
+
# Calculate start and end indices for current page
|
225 |
+
start_idx = (st.session_state.current_page - 1) * rows_per_page
|
226 |
+
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
|
227 |
+
st.dataframe(
|
228 |
+
working_df.iloc[start_idx:end_idx].style
|
229 |
+
.background_gradient(axis=0)
|
230 |
+
.background_gradient(cmap='RdYlGn')
|
231 |
+
.format(precision=2),
|
232 |
+
height=500,
|
233 |
+
use_container_width=True,
|
234 |
+
hide_index=True
|
235 |
+
)
|
236 |
|
237 |
+
with st.container():
|
238 |
+
tab1, tab2, tab3 = st.tabs(['Player Used Info', 'Stack Used Info', 'Duplication Info'])
|
239 |
+
with tab1:
|
240 |
+
st.session_state['field_frame'] = create_player_exposures(working_df, player_columns)
|
241 |
+
if entry_parse_var == 'All':
|
242 |
+
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns)
|
243 |
+
st.dataframe(st.session_state['player_frame'].
|
244 |
+
sort_values(by='Exposure Overall', ascending=False).
|
245 |
+
style.background_gradient(cmap='RdYlGn').
|
246 |
+
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
247 |
+
hide_index=True)
|
248 |
+
else:
|
249 |
+
st.session_state['player_frame'] = create_player_exposures(working_df, player_columns, entry_names)
|
250 |
+
st.dataframe(st.session_state['player_frame'].
|
251 |
+
sort_values(by='Exposure Overall', ascending=False).
|
252 |
+
style.background_gradient(cmap='RdYlGn').
|
253 |
+
format(formatter='{:.2%}', subset=st.session_state['player_frame'].select_dtypes(include=['number']).columns),
|
254 |
+
hide_index=True)
|
255 |
+
with tab2:
|
256 |
+
if entry_parse_var == 'All':
|
257 |
+
overall_stacks = pd.Series(list(working_df['stack'])).value_counts()
|
258 |
+
top_1per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01]['stack'])).value_counts()
|
259 |
+
top_5per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05]['stack'])).value_counts()
|
260 |
+
top_10per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10]['stack'])).value_counts()
|
261 |
+
top_20per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20]['stack'])).value_counts()
|
262 |
+
stacks_contest_len = len(working_df)
|
263 |
+
stacks_len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
|
264 |
+
stacks_len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
|
265 |
+
stacks_len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
|
266 |
+
stacks_len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
|
267 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
268 |
+
each_stacks_set = [overall_stacks, top_1per_stacks, top_5per_stacks, top_10per_stacks, top_20per_stacks]
|
269 |
+
each_stacks_len_set = [stacks_contest_len, stacks_len_1per, stacks_len_5per, stacks_len_10per, stacks_len_20per]
|
270 |
+
stack_count_var = 0
|
271 |
+
for each_stack in each_stacks_set:
|
272 |
+
stack_frame = each_stack.to_frame().reset_index().rename(columns={'index': 'Stack', 'count': 'Count'})
|
273 |
+
stack_frame['Percent'] = stack_frame['Count'] / each_stacks_len_set[stack_count_var]
|
274 |
+
stack_frame = stack_frame[['Stack', 'Percent']]
|
275 |
+
stack_frame = stack_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_count_var]}'})
|
276 |
+
if 'stack_frame' not in st.session_state:
|
277 |
+
st.session_state['stack_frame'] = stack_frame
|
278 |
+
else:
|
279 |
+
st.session_state['stack_frame'] = pd.merge(st.session_state['stack_frame'], stack_frame, on='Stack', how='outer')
|
280 |
+
stack_count_var += 1
|
281 |
+
st.dataframe(st.session_state['stack_frame'].
|
282 |
+
sort_values(by='Exposure Overall', ascending=False).
|
283 |
+
style.background_gradient(cmap='RdYlGn').
|
284 |
+
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
|
285 |
+
hide_index=True)
|
286 |
+
else:
|
287 |
+
overall_stacks = pd.Series(list(working_df[working_df['BaseName'].isin(entry_names)]['stack'])).value_counts()
|
288 |
+
top_1per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.01]['stack'])).value_counts()
|
289 |
+
top_5per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.05]['stack'])).value_counts()
|
290 |
+
top_10per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.10]['stack'])).value_counts()
|
291 |
+
top_20per_stacks = pd.Series(list(working_df[working_df['percentile_finish'] <= 0.20]['stack'])).value_counts()
|
292 |
+
stacks_contest_len = len(working_df)
|
293 |
+
stacks_len_1per = len(working_df[working_df['percentile_finish'] <= 0.01])
|
294 |
+
stacks_len_5per = len(working_df[working_df['percentile_finish'] <= 0.05])
|
295 |
+
stacks_len_10per = len(working_df[working_df['percentile_finish'] <= 0.10])
|
296 |
+
stacks_len_20per = len(working_df[working_df['percentile_finish'] <= 0.20])
|
297 |
+
each_set_name = ['Overall', ' Top 1%', ' Top 5%', 'Top 10%', 'Top 20%']
|
298 |
+
each_stacks_set = [overall_stacks, top_1per_stacks, top_5per_stacks, top_10per_stacks, top_20per_stacks]
|
299 |
+
each_stacks_len_set = [stacks_contest_len, stacks_len_1per, stacks_len_5per, stacks_len_10per, stacks_len_20per]
|
300 |
+
stack_count_var = 0
|
301 |
+
for each_stack in each_stacks_set:
|
302 |
+
stack_frame = each_stack.to_frame().reset_index().rename(columns={'index': 'Stack', 'count': 'Count'})
|
303 |
+
stack_frame['Percent'] = stack_frame['Count'] / each_stacks_len_set[stack_count_var]
|
304 |
+
stack_frame = stack_frame[['Stack', 'Percent']]
|
305 |
+
stack_frame = stack_frame.rename(columns={'Percent': f'Exposure {each_set_name[stack_count_var]}'})
|
306 |
+
if 'stack_frame' not in st.session_state:
|
307 |
+
st.session_state['stack_frame'] = stack_frame
|
308 |
+
else:
|
309 |
+
st.session_state['stack_frame'] = pd.merge(st.session_state['stack_frame'], stack_frame, on='Stack', how='outer')
|
310 |
+
stack_count_var += 1
|
311 |
+
st.dataframe(st.session_state['stack_frame'].
|
312 |
+
sort_values(by='Exposure Overall', ascending=False).
|
313 |
+
style.background_gradient(cmap='RdYlGn').
|
314 |
+
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].select_dtypes(include=['number']).columns),
|
315 |
+
hide_index=True)
|
316 |
+
with tab3:
|
317 |
+
st.write('holding')
|